一 原理
几何矩是由Hu(Visual pattern recognition by moment invariants)在1962年提出的,具有平移、旋转和尺度不变性。 定义如下:
① (p+q)阶不变矩定义:
② 对于数字图像,离散化,定义为:
③ 归一化中心矩定义:
④Hu矩定义
-------------------------------------------------------------------------------------------------------------------------------
二 实现(源码)
View Code
1 //#################################################################################// 2 double M[7] = {0}; //HU不变矩 3 bool HuMoment(IplImage* img) 4 { 5 int bmpWidth = img->width; 6 int bmpHeight = img->height; 7 int bmpStep = img->widthStep; 8 int bmpChannels = img->nChannels; 9 uchar*pBmpBuf = (uchar*)img->imageData; 10 11 double m00=0,m11=0,m20=0,m02=0,m30=0,m03=0,m12=0,m21=0; //中心矩 12 double x0=0,y0=0; //计算中心距时所使用的临时变量(x-x') 13 double u20=0,u02=0,u11=0,u30=0,u03=0,u12=0,u21=0;//规范化后的中心矩 14 //double M[7]; //HU不变矩 15 double t1=0,t2=0,t3=0,t4=0,t5=0;//临时变量, 16 //double Center_x=0,Center_y=0;//重心 17 int Center_x=0,Center_y=0;//重心 18 int i,j; //循环变量 19 20 // 获得图像的区域重心(普通矩) 21 double s10=0,s01=0,s00=0; //0阶矩和1阶矩 22 for(j=0;j<bmpHeight;j++)//y 23 { 24 for(i=0;i<bmpWidth;i++)//x 25 { 26 s10+=i*pBmpBuf[j*bmpStep+i]; 27 s01+=j*pBmpBuf[j*bmpStep+i]; 28 s00+=pBmpBuf[j*bmpStep+i]; 29 } 30 } 31 Center_x=(int)(s10/s00+0.5); 32 Center_y=(int)(s01/s00+0.5); 33 34 // 计算二阶、三阶矩(中心矩) 35 m00=s00; 36 for(j=0;j<bmpHeight;j++) 37 { 38 for(i=0;i<bmpWidth;i++)//x 39 { 40 x0=(i-Center_x); 41 y0=(j-Center_y); 42 m11+=x0*y0*pBmpBuf[j*bmpStep+i]; 43 m20+=x0*x0*pBmpBuf[j*bmpStep+i]; 44 m02+=y0*y0*pBmpBuf[j*bmpStep+i]; 45 m03+=y0*y0*y0*pBmpBuf[j*bmpStep+i]; 46 m30+=x0*x0*x0*pBmpBuf[j*bmpStep+i]; 47 m12+=x0*y0*y0*pBmpBuf[j*bmpStep+i]; 48 m21+=x0*x0*y0*pBmpBuf[j*bmpStep+i]; 49 } 50 } 51 52 // 计算规范化后的中心矩: mij/pow(m00,((i+j+2)/2) 53 u20=m20/pow(m00,2); 54 u02=m02/pow(m00,2); 55 u11=m11/pow(m00,2); 56 u30=m30/pow(m00,2.5); 57 u03=m03/pow(m00,2.5); 58 u12=m12/pow(m00,2.5); 59 u21=m21/pow(m00,2.5); 60 61 // 计算中间变量 62 t1=(u20-u02); 63 t2=(u30-3*u12); 64 t3=(3*u21-u03); 65 t4=(u30+u12); 66 t5=(u21+u03); 67 68 // 计算不变矩 69 M[0]=u20+u02; 70 M[1]=t1*t1+4*u11*u11; 71 M[2]=t2*t2+t3*t3; 72 M[3]=t4*t4+t5*t5; 73 M[4]=t2*t4*(t4*t4-3*t5*t5)+t3*t5*(3*t4*t4-t5*t5); 74 M[5]=t1*(t4*t4-t5*t5)+4*u11*t4*t5; 75 M[6]=t3*t4*(t4*t4-3*t5*t5)-t2*t5*(3*t4*t4-t5*t5); 76 77 returntrue; 78 }
②调用OpenCV方法
1 // 利用OpenCV函数求7个Hu矩 2 CvMoments moments; 3 CvHuMoments hu; 4 cvMoments(bkImgEdge,&moments,0); 5 cvGetHuMoments(&moments, &hu); 6 cout<<hu.hu1<<"/"<<hu.hu2<<"/"<<hu.hu3<<"/"<<hu.hu4<<"/"<<hu.hu5<<"/"<<hu.hu6<<"/"<<hu.hu7<<"/"<<"/"<<endl; 7 cvMoments(testImgEdge,&moments,0); 8 cvGetHuMoments(&moments, &hu); 9 cout<<hu.hu1<<"/"<<hu.hu2<<"/"<<hu.hu3<<"/"<<hu.hu4<<"/"<<hu.hu5<<"/"<<hu.hu6<<"/"<<hu.hu7<<"/"<<"/"<<endl;
-------------------------------------------------------------------------------------------------------------------------------
三 相似性准则
①法一
// 计算相似度1 double dbR =0; //相似度 double dSigmaST =0; double dSigmaS =0; double dSigmaT =0; double temp =0; {for(int i=0;i<8;i++) { temp = fabs(Sa[i]*Ta[i]); dSigmaST+=temp; dSigmaS+=pow(Sa[i],2); dSigmaT+=pow(Ta[i],2); }} dbR = dSigmaST/(sqrt(dSigmaS)*sqrt(dSigmaT));
②法二
1 // 计算相似度2 2 double dbR2 =0; //相似度 3 double temp2 =0; 4 double temp3 =0; 5 {for(int i=0;i<7;i++) 6 { 7 temp2 += fabs(Sa[i]-Ta[i]); 8 temp3 += fabs(Sa[i]+Ta[i]); 9 }} 10 dbR2 =1- (temp2*1.0)/(temp3);