机器学习简答题

1、请简述人工智能和机器学习,深度学习的关系?

机器学习是人工智能的一个实现途径。深度学习是机器学习的一个方法发展而来

2、根据数据集组成不同,通常可以把机器学习算法分为哪四类?

监督学习、无监督学习、半监督学习、强化学习

3、请简述什么是监督学习?什么是无监督学习?

有监督学习是指训练数据中包含了输入和输出的标签信息,目标是通过已知输入和输出来预测新数据的标签。

无监督学习是指训练数据中只有输入特征,没有输出标签,目标是根据数据的内在结构、分布或相似性进行聚类、降维等操作。

具体例子:

假设我们有一组包含房屋面积和销售价格的数据。如果我们要根据已有数据预测新房屋的销售价格,这就是一个有监督学习的问题。而如果我们只有房屋面积的数据,但没有任何关于价格的信息,我们可以使用聚类算法将相似大小的房屋分组,这是一个无监督学习的问题。

4、请简述什么是机器学习?

机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。

5、机器学习工作流程有哪五步?

1.获取数据
2.数据基本处理
3.特征工程
4.机器学习(模型训练)
5.模型评估
结果达到要求就上线服务,如果没有达到要求,重新上面步骤

6、什么是线性回归?它的特点是什么?

线

### 机器学习完整流程步骤介绍 #### 数据收集 数据收集是从各个渠道获取用于训练和测试的数据。这些数据源可能包括数据库、文件、网络爬虫或其他形式的信息采集工具。 #### 数据预处理 在构建任何预测模型之前,必须先对原始数据进行清洗和准备。此过程涉及去除噪声、填补缺失值以及标准化数值范围等操作[^1]。有效的数据预处理能够显著提升后续建模的效果。 #### 特征工程 特征工程是指通过分析业务逻辑和技术手段创造新的变量或修改现有变量的过程。这一步骤对于提高模型性能至关重要。有时为了使自定义转换器能与`scikit-learn`框架兼容,开发者需确保其对象实现了特定的方法接口,即使不采用正式的类继承机制也能正常运作于管道之中[^2]。 ```python from sklearn.base import BaseEstimator, TransformerMixin class CustomTransformer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X): # 自定义变换逻辑 pass ``` #### 模型选择与训练 基于问题性质挑选合适的算法,并利用已有的标注样本集对其进行参数调整直至收敛稳定。在此阶段可能会尝试多种不同的分类器或者回归器来进行比较实验。 #### 模型评估 当完成初步训练之后,应当运用独立的验证集合来检验所选方案的实际效能如何。通常会计算诸如精确率(Precision)、召回率(Recall)之类的统计指标作为衡量标准之一;而最终目的是找到那个表现最佳者[^3]。 #### 部署上线 一旦确认某个版本达到了预期目标,则可将其部署到生产环境中投入使用。此时还需考虑实时更新策略及监控反馈机制等问题以保障系统的长期可靠运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值