简答题:
- 简答题:
-
- 1、请简述人工智能和机器学习,深度学习的关系?
- 2、根据数据集组成不同,通常可以把机器学习算法分为哪四类?
- 3、请简述什么是监督学习?什么是无监督学习?
- 4、请简述什么是机器学习?
- 5、机器学习工作流程有哪五步?
- 6、请简述什么是特征工程?
- 7、请简述特征工程主要包含什么内容?
- 8、请简述什么是特征提取?
- 9、请简述什么是特征预处理?
- 10、请简述什么是特征降维?
- 11、分类模型评估的主要评价指标有哪些?
- 12、回归模型评估的主要评价指标有哪些?
- 13、简要说明什么是超参数?
- 14、超参数和模型参数有什么不同?
- 15、什么情况我们需要对数据进行归一化处理?归一化的作用什么?
- 16、常用的归一化的方法有哪两个?分别适用的情况是什么?
- 17、简述K-近邻算法的优点和缺点。
- 18、什么是线性回归?它的特点是什么?
- 19、线性回归中的梯度下降和正规方程方法有什么不同?
- 20、常见的梯度下降算法有哪些?
- 21、简述欠拟合原因以及解决办法。
- 22、简述过拟合原因以及解决办法。
- 23、什么是正则化?正则化类别有哪两种?
- 24、什么是精确率?
- 25、什么是召回率?
- 26、简述 k-means聚类算法实现的步骤。
- 27、简述一下K-means算法的优点。
- 28、简述一下K-means算法的缺点。
- 29、在聚类算法中什么是降维?它有哪两种形式?
- 30、在聚类算法中什么是主成分分析(PCA)?
- 31、在聚类算法中主成分分析(PCA)的作用是什么?
1、请简述人工智能和机器学习,深度学习的关系?
机器学习是人工智能的一个实现途径。深度学习是机器学习的一个方法发展而来
2、根据数据集组成不同,通常可以把机器学习算法分为哪四类?
监督学习、无监督学习、半监督学习、强化学习
3、请简述什么是监督学习?什么是无监督学习?
监督学习的输入数据是由输入特征值和目标值所组成。 无监督学习输入数据是由输入特征值组成,没有目标值。
4、请简述什么是机器学习?
机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。
5、机器学习工作流程有哪五步?
1.获取数据
2.数据基本处理
3.特征工程
4.机器学习(模型训练)
5.模型评估
结果达到要求就上线服务,如果没有达到要求,重新上面步骤
6、请简述什么是特征工程?
特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
7、请简述特征工程主要包含什么内容?
特征提取、特征预处理、特征降维。
8、请简述什么是特征提取?
将任意数据(如文本或图像)转换为可用于机器学习的数字特征。
9、请简述什么是特征预处理?
通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程。
10、请简述什么是特征降维?
指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程。
11、分类模型评估的主要评价指标有哪些?
准确率、精确率、召回率、F1-score、AUC指标等
12、回归模型评估的主要评价指标有哪些?
均方根误差(RMSE)、相对平方误差(RSE)、平均绝对误差(MAE)、相对绝对误差(RAE)
13、简要说明什么是超参数?
超参数就是在运行机器学习算法之前需要指定值的参数
14、超参数和模型参数有什么不同?
超参数:指在算法运