机器学习 简答题 速记

简答题:

1、请简述人工智能和机器学习,深度学习的关系?

机器学习是人工智能的一个实现途径。深度学习是机器学习的一个方法发展而来

2、根据数据集组成不同,通常可以把机器学习算法分为哪四类?

监督学习、无监督学习、半监督学习、强化学习

3、请简述什么是监督学习?什么是无监督学习?

监督学习的输入数据是由输入特征值和目标值所组成。 无监督学习输入数据是由输入特征值组成,没有目标值。

4、请简述什么是机器学习?

机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。

5、机器学习工作流程有哪五步?

1.获取数据
2.数据基本处理
3.特征工程
4.机器学习(模型训练)
5.模型评估
结果达到要求就上线服务,如果没有达到要求,重新上面步骤

6、请简述什么是特征工程?

特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

7、请简述特征工程主要包含什么内容?

特征提取、特征预处理、特征降维。

8、请简述什么是特征提取?

将任意数据(如文本或图像)转换为可用于机器学习的数字特征。

9、请简述什么是特征预处理?

通过一些转换函数将特征数据转换成更加适合算法模型的特征数据过程。

10、请简述什么是特征降维?

指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程。

11、分类模型评估的主要评价指标有哪些?

准确率、精确率、召回率、F1-score、AUC指标等

12、回归模型评估的主要评价指标有哪些?

均方根误差(RMSE)、相对平方误差(RSE)、平均绝对误差(MAE)、相对绝对误差(RAE)

13、简要说明什么是超参数?

超参数就是在运行机器学习算法之前需要指定值的参数

14、超参数和模型参数有什么不同?

超参数:指在算法运

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寂静花开

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值