Given a 2D board and a list of words from the dictionary, find all words in the board.
Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.
For example,
Given
words
=
["oath","pea","eat","rain"]
and
board
=
[
['
o
','
a
','a','n'],
['e','
t
','
a
','
e
'],
['i','
h
','k','r'],
['i','f','l','v']
]
Return ["eat","oath”].
首先想到的是 对于每一个单词 从第一个字母开始 比如oath
那么就从board中找o 找到之后想四个方向遍历 看能不能找到a 然后继续找t、h 类似广度优先遍历
实际上时间复杂度很高 而且会死循环 因为向外遍历时有可能遍历到之前的点 这样的话就还需要一个visited数组来存储哪些点被访问过 空间复杂度又上来了
这时候就要逆向思维了 从board里找word不好找 那从word里找board呢?
流程是这样 把word存进trie
board[0][0] = ‘o’ 从trie开始找o 找到之后 board分别向四个方向遍历 trie向下遍历 继续从trie中找board中的字母
如果到了trie的某个节点 这个节点标识已经到了一个单词的结尾 比如oath的h 那么说明从trie中找到了board中的一个序列
public List<String> findWords(char[][] board, String[] words) {
List<String> res = new ArrayList<>();
TrieNode root = buildTrie(words);
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
dfs (board, i, j, root, res);
}
}
return res;
}
public void dfs(char[][] board, int i, int j, TrieNode p, List<String> res) {
char c = board[i][j];
if (c == '#' || p.next[c - 'a'] == null) return;
p = p.next[c - 'a'];
if (p.word != null) { // found one
res.add(p.word);
p.word = null; // de-duplicate
}
board[i][j] = '#';
if (i > 0) dfs(board, i - 1, j ,p, res);
if (j > 0) dfs(board, i, j - 1, p, res);
if (i < board.length - 1) dfs(board, i + 1, j, p, res);
if (j < board[0].length - 1) dfs(board, i, j + 1, p, res);
board[i][j] = c;
}
public TrieNode buildTrie(String[] words) {
TrieNode root = new TrieNode();
for (String w : words) {
TrieNode p = root;
for (char c : w.toCharArray()) {
int i = c - 'a';
if (p.next[i] == null) p.next[i] = new TrieNode();
p = p.next[i];
}
p.word = w;
}
return root;
}
class TrieNode {
TrieNode[] next = new TrieNode[26];
String word;
}