🔍 在 Solana 网络中,了解某个 SPL 代币的持有者分布不仅是基础的数据需求,更是识别项目活跃度、锁仓结构、投机行为与潜在操盘风险的重要维度。
本文将从技术视角,逐步拆解如何系统性地获取、分析与加工代币持仓数据,并介绍常用的链上工具、代码实现方式与衍生洞察方向。
📦 一、SPL 代币的账户模型简析
在 Solana 中,代币持仓并不直接存储在用户钱包地址中,而是映射在Token Account(代币账户)里。每个 Token Account 属于某个钱包,并关联某个 Mint(代币地址)。
结构上看:
-
一个钱包地址可能对应多个代币账户
-
每个 Token Account 都通过
Token Program
创建(通常是Token-2022
或标准SPL Token Program
) -
要获取所有持仓地址,必须遍历所有 Token Account 并筛选出匹配
mint
的记录
🛠️ 二、如何通过 RPC 获取代币持有者数据?
以 getProgramAccounts
方法为例:
POST / HTTP/1.1
Host: api.mainnet-beta.solana.com
Content-Type: application/json
{
"jsonrpc": "2.0",
"id": 1,
"method": "getProgramAccounts",
"params": [
"TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA",
{
"encoding": "jsonParsed",
"filters": [
{ "dataSize": 165 },
{
"memcmp": {
"offset": 0,
"bytes": "<YOUR_TOKEN_MINT>"
}
}
]
}
]
}
解释:
-
TokenkegQfeZyiNwAJbNbGKPFXCWuBvf9Ss623VQ5DA
是 SPL 标准 Token Program 的地址 -
dataSize: 165
过滤出标准 Token Account -
memcmp
是根据数据偏移量过滤指定 Mint
响应中,你可以获取所有 token accounts,然后从中提取出 owner
字段作为持有者地址。
🧠 三、问题进阶:如何过滤“真实持仓者”?
很多地址虽创建了 token account,但余额为 0。为准确分析持仓结构,可进一步做:
-
过滤余额为 0 的 Token Account
-
根据余额大小排序,获取 Top N 持仓地址
-
归类特殊地址类型:
-
冻结地址(锁仓)
-
智能合约控制地址(流动性池、质押等)
-
热钱包地址(交易所)
-
🔬 四、进阶洞察:从数据提取到行为分析
获取到完整持仓数据后,可以做进一步的链上分析:
✅ 1. 分布分析(Distribution Metrics)
-
地址数量 vs 总供应比例
-
Top 10 地址持仓比例
-
Gini 系数计算(衡量持仓集中度)
✅ 2. 标签识别(Entity Attribution)
-
利用 open-source 数据(如 SolanaFM、Solscan、Arkham)进行地址归属识别
-
热钱包/交易所 vs 智能合约 vs DAO vs 团队地址 vs 空投猎人
✅ 3. 行为关联图谱(Behavioral Mapping)
-
地址间是否存在资金转移
-
是否批量转账(bot迹象)
-
是否有“同步启动”的地址群(可能为同一操盘方)
🤖 五、如何构建自动化分析工具?
构建链上代币分析的自动化流程,并不一定要从零编码开始。以下是推荐的技术路径:
-
Python + Requests + Pandas:可用于批量抓取链上账户数据、清洗格式并进行结构化分析。
-
Solana.py:作为与 Solana 网络交互的 SDK,可读取账户、转账记录、代币余额等链上数据。
-
Jupyter Notebook:适合快速迭代代码、可视化分布情况(如 Token Top Holders 分布图、累积占比图)。
-
图数据库(如 Neo4j):可用于识别复杂的地址转移网络与行为路径,比如识别集群化地址或空投猎人地址结构。
但如果你只是想快速获取一个代币的完整持仓快照,无需代码部署,也可以尝试更高效的图形化工具。
例如,一些链上工具平台(如 CiaoTool)已经内置Solana 持仓快照模块,支持你:
✅ 复制粘贴 Token 地址
✅ 一键生成当前持币地址列表(可导出 CSV)
✅ 支持按持仓数量排序、清除余额为 0 的地址
对于日常社区空投、公平启动快照、锁仓核验等场景,非常适用且节省时间。
在数据分析日益工程化的今天,自动化能力 + 灵活工具的组合,才是高效 Web3 项目运营的底层竞争力。你可以根据需要自行部署,也可以善用现有工具模块,两者并不冲突。最终目标,是让链上数据真正服务于你的洞察力与决策效率。