豁达

本文探讨了豁达对于人生的重要性,指出想得开、看得破是实现快乐生活的关键。通过引用金碧峰禅师的故事以及弥勒菩萨的智慧,强调了拥有豁达心态、敢于放下物质和名利的束缚,才能体验到真正的逍遥自在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

豁达

  想得开,看得破,这就是「豁达的人生」!

  人生,往往因为想不开、看不破,所以烦恼重重。一间房子,没有门出去,长久关闭在里面,怎么会快乐呢?住在一座古城里,多时不能出城,你也会感觉到自己的世界太狭小了。我们好名,被名枷给捆绑了;我们好利,被利锁给缚住了。人陷在自私的感情里,就会有所执爱;爱得没有自由,爱得没有出路,爱的束缚,就是因为自己没有豁达的心胸。不能豁达的人生,被圈圈圈住,被框框框住;所谓「坐井观天」,那里能看到广大无边的天地呢?

  世间的凡夫众生,往往被一个人就能捆锁住我们;一句是非也能左右我们。在无明的人我是非里面,没有豁达的心情,没有豁达的观念,想要获得快乐,实在难矣也!

  有的人,对金钱放不下,做了金钱的奴隶;对物质放不下,做了物质的囚徒。有的人为了守住一栋房子,不肯出外旅行;有的人养了一只宠物,就不许其它的猫狗入内。有的人为了尽孝守墓,荒废了多少年轻的岁月?有的人为了一个官位,不惜一切的钻营。如果我们能有豁达的人生,「心量如同虚空界,思惟多如恒河沙」,那里会被世间的这许多葛藤牵绊呢?

  古代有一位金碧峰禅师,过份喜爱他乞食的玉钵,因为一念贪执,几乎被阴间的狱卒拘去,幸亏他觉醒得早,掷破玉钵,舍去贪念。他说:「若人欲拿金碧峰,除非铁链锁虚空;虚空若能锁得住,再来拿我金碧峰。」此即突破贪执的观念,而进入到豁达的人生。

  弥勒菩萨的「行也布袋,坐也布袋;放下布袋,何等自在!」弥勒不被布袋所拖累,金碧峰不为玉钵所拘囚;乃至赵州不受赵州茶的操纵,云门不受云门饼的牵绊,万事能够放下,那是何等逍遥自在的人生啊!

  甚至庄子的「鼓盆而歌」,善慧大士一家人的「坐化立亡」,王打铁在火炉边的「站立往生」,丹霞禅师觉悟「考官不如考佛」而剃度等;他们能够「拥有」,也能「空无」,他们在功名富贵、穷通得失之间,都不忘自在,这就是豁达的人生。能够心胸豁达,人生何其美好啊!
资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个人区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值