几个目前(2022-10-7)免费可用的IP属地查询接口

几个目前(2022-10-7)免费可用的IP属地查询接口

接口地址
https://ip.useragentinfo.com/json?ip=182.150.22.3
http://opendata.baidu.com/api.php?query=182.150.22.3&co=&resource_id=6006&oe=utf8
http://ip-api.com/json/182.150.22.3?lang=zh-CN
http://whois.pconline.com.cn/ipJson.jsp?ip=182.150.22.3&json=true
### 属地网民信息的数据可视化方法与实现 #### 1. 数据准备 在进行数据可视化之前,需先获取并整理所需的数据。通常这些数据可以从社交媒体平台或其他公开资源中获得。具体到属地网民的信息,主要包括IP地址对应的地理区域、互动行为(如点赞、评论、转发)、时间戳等。 对于微博、B站这类社交平台上的用户活动记录,可以利用API接口来抓取相关帖子及其元数据[^2]。需要注意的是,在实际操作过程中要遵循各平台的服务条款以及法律法规的要求。 #### 2. 可视化工具和技术栈选择 针对此类时空分布特征明显的大规模离散型数据集,推荐采用以下几种技术方案: - **Python库**:Matplotlib用于绘制静态图表;Seaborn提供更美观的主题样式;Folium能够方便快捷地创建交互式的地图界面; - **JavaScript框架**:D3.js擅长处理复杂的动态图形效果;Leaflet适合构建基于Web的地图应用程序。 - **BI商业智能软件**:Tableau拥有强大的拖拽式设计功能,无需编写大量代码即可完成高质量报表制作;Power BI则以其良好的Excel集成性和微软生态兼容性著称。 #### 3. 关键指标定义 为了更好地展示不同地区用户的活跃度差异,建议关注以下几个维度: - 发帖数量随时间和空间的变化趋势图; - 各省份/城市间参与热度对比柱状图或饼图; - 地理位置标记点密度热力图; - 用户情感倾向分析词云图。 ```python import folium from branca.colormap import linear def create_heatmap(df, location_column='location', value_column='count'): """ 创建一个简单的热力图 参数: df (DataFrame): 包含地点和计数值的Pandas DataFrame对象 location_column (str): 存储地理位置名称的列名,默认为'location' value_column (str): 记录频次大小的字段标识符,默认设为'count' 返回值: heatmap_map (folium.Map): Folium生成的地图实例 """ # 初始化中心坐标为中国版图中央附近 china_center = [35.8617, 104.1954] # 新建一张空白底图 heatmap_map = folium.Map(location=china_center, zoom_start=5) # 构造颜色渐变映射关系 colormap = linear.YlOrRd_09.scale( min(df[value_column]), max(df[value_column])) # 添加彩色标注层至地图上 for index, row in df.iterrows(): latlng = get_coordinates(row[location_column]) popup_text = f"{row[location_column]}<br>({latlng})" marker_color = colormap(row[value_column]) folium.CircleMarker( location=[latlng], radius=row[value_column]/1e3 + 5, color='#ffcccb', fill=True, fill_opacity=.6, popup=popup_text).add_to(heatmap_map) return heatmap_map # 假定有一个名为dataframe的pandas dataframe, # 它至少包含两列表示各地级市名称和地区内发贴总数目 example_df = pd.DataFrame({ 'city': ['北京市','上海市','广州市'], 'post_count':[1000,800,600] }) create_heatmap(example_df,'city','post_count') ``` 此段代码展示了如何使用`folium`库结合自定义函数`create_heatmap()`快速搭建起一份中国境内部分城市的网络讨论热度概览页面。其中圆圈半径代表当地话题提及次数多少,而填充色彩深浅反映了相对强度等级。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值