2.大话西游与数字游戏
“叉烧鸡翅膀,我呀最爱吃!……”
百度spider组的“黑龙潭之行”在烤着鸡翅,唱着星爷的经典时达到高潮。大家在篝火旁围成一圈,开始玩“数7”加强版游戏,规则如下:
规则1:遇7的倍数或含7的数时pass。
规则2:遇有包含相同数字的数时pass。注意相同数字不必相邻。例如121。
数错的惩罚很残酷——吞食烤全羊。为避免惩罚,百度工程师们需要你——史上最强程序员的帮助。百度工程师想知道:
req1 x:符合规则1的第x个数是什么?
req2 y:符合规则2的第y个数是什么?
req12 z:同时符合规则1、2的第z个数是什么?
query n:数n是规则1中的第几个数,是规则2中的第几个数?
输入格式
输入的每一行为一个查询,由一个查询词和一个无符号整型数组成。共有四种查询,查询词分别为req1、req2、req12、query(区分大小写)。
输出格式
前三种查询输出一个无符号整型的解。对于“query n”的查询,若n是规则中的数则输出相应的解,否则输出-1。
输入样例 例
req1 10
req2 10
req12 10
query 14
输出样例 例
11
10
12
-1 13
评分规则
- 程序将运行在一台Linux机器上(内存使用不作严格限制),在每一测试用例上运行不能超过1秒,否则该用例不得分;
- 要求程序能按照输入样例的格式读取标准输入数据,按照输出样例的格式将运行结果输出到标准输出上。如果不能正确读入数据和输出数据,该题将不得分;
- 该题目共有10个测试数据集,其中数据1~5主要考查正确性,满足x,y,z,n<=1000;输入6~10主要考查时间效率,满足x<=10,000,000,y<=1,000,000,z<=240,000,n<=20,000,000。数据1和6只包含req1,数据2和7只包含req2,数据3和8只包含req12,数据4和7只包含query,数据5和10包含全部四种查询。每组数据都恰好包含100个查询。
- 该题目20分。
我的程序:
#include <stdio.h>
#include <vector>
#include <iostream>
#include <deque>
#include <string>
#include <math.h>
using namespace std;
bool IsContain7(int nData)
{
int nRec = nData%10;
if (nRec == 7)
{
return true;
}
while (nData/10 > 0)
{
nData = nData/10;
if (nData%10 == 7)
{
return true;
}
}
return false;
}
int Req1(int nData)
{
int nResult = 0;
int nCount = 0;
int nUpBound = 7*nData; //不会超过7倍
for (int i = 6; i <= nUpBound; i ++)
{
if ((i % 7 == 0)||IsContain7(i))
{
nCount ++;
}
if (nCount == nData)
{
return i;
}
}
}
bool IsRepeat(int nData)
{
vector<int> Number;
while (int(nData) >0)
{
int nUint = nData%10;
nData = nData/10;
for (int i = 0; i < Number.size(); i ++)
{
if (nUint == Number[i])
{
return true;
}
}
Number.push_back(nUint);
}
return false;
}
int Req2(int nData)
{
int nResult = 0;
int nUpBound = 11*nData;
int nCount = 0;
for (int i = 11; i <= nUpBound; i ++)
{
bool bResult = IsRepeat(i);
if (bResult)
{
nCount ++;
}
if (nCount == nData)
{
return i;
}
}
}
int Req12(int nData)
{
int nResult = 0;
int nCount = 0;
int nUpBound = 7*nData; //不会超过7倍
for (int i = 6; i <= nUpBound; i ++)
{
if ((i % 7 == 0)||IsContain7(i) || IsRepeat(i))
{
nCount ++;
}
if (nCount == nData)
{
return i;
}
}
return nResult;
}
void Query(int nData, int * nPos1, int *nPos2)
{
int nResult = 0;
int nNum = nData/7 + 1;
if ((nData % 7 != 0)&& !IsContain7(nData) && !IsRepeat(nData))
{
*nPos2 = -1;
*nPos1 = -1;
}
vector<int> nData7;
for (int i = 1; i < nNum; i ++)
{
int nData1 = Req1(i);
nData7.push_back(nData1);
if (nData1 = nData)
{
*nPos1 = i;
}
}
int nNum2 = nData/11 + 1;
vector<int> nData11;
for (int j = 1; j < nNum2; j ++)
{
int nData2 = Req2(j);
nData11.push_back(nData2);
if (nData2 = nData)
{
*nPos2 = j;
}
}
}
int main()
{
int nNum = 100;
string str;
int nData = 0;
int nCount = 0;
string str1[100];
int nData1[100];
for (int j = 0; j < nNum; j ++)
{
cin>>str;
cin>>nData;
str1[j] = str;
nData1[j] = nData;
}
for (int i = 0; i < nNum; i ++)
{
str = str1[i];
nData = nData1[i];
if ( str == "req1")
{
long nResult = Req1(nData);
printf("%ld/n",nResult);
}
else if(str == "req2")
{
long nResult = Req2(nData);
printf("%ld/n",nResult);
}
else if (str == "req12")
{
long nResult = Req12(nData);
printf("%ld/n",nResult);
}
else if (str == "query")
{
nCount ++;
int nPos1 = 0;
int nPos2 = 0;
Query(nData,&nPos1,&nPos2);
if (!nPos1)
{
nPos1 = -1;
}
if (!nPos2)
{
nPos2 = -1;
}
printf("%ld %ld/n",nPos1,nPos2);
}
else
{
printf("Input Error!");
}
}
}