Logistic Regression with a Neural Network mindset

本文是吴恩达深度学习相关课程第一课第二周的作业,用神经网络的思维方式实现逻辑回归,完成图片中猫的识别。为了自己完整实现这个过程,我没有在Coursera上做练习,而是在本地的环境下做的。下面说明下具体过程,以及在这个过程中遇到的问题和解决方法。

首先,完成相关包的导入。其中需要说明的是,我在python3上直接用“pip install PIL”安装出问题了,提示说这个包在python2上才有。后来在网上查到PIL在python3上叫pillow,于是直接“pip install pillow”。但是导入的时候,还是把它当做PIL。

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset

%matplotlib inline
这里用到了lr_utils这个包,它其实就是一个py文件,里面对h5文件进行了解析,具体如下:

#lr_utils.py
import numpy as np
import h5py
        
def load_dataset():
    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
lr_utils.py中用到的两个h5文件可以在 这里下载。

然后,加载数据集

train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
测试数据是否加载正常

# example of a picture
index = 25
plt.imshow(train_set_x_orig[index])
print("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[np.squeeze(train_set_y[:, index])].decode("utf-8") +  "' picture.")
#print("y = " + str(train_set_y[:, index]) + ", it's a '" + classes[train_set_y[0,index]].decode("utf-8") +  "' picture.")
如果加载正常,则会出现一幅图像,并告诉你这幅图像是否有猫。

获取各个数据集的size或shape:

m_train = train_set_x_orig.shape[0] #训练样本数
m_test = test_set_x_orig.shape[0] #测试样本数
num_px = train_set_x_orig.shape[1] #图像尺寸

print('number of training examples: m_train = ' + str(m_train))
print('number of testing wxamples: m_test = ' + str(m_test))
print('height/width of each image: num_px = ' + str(num_px))
print('each image is of size: (' + str(num_px) + ', ' + str(num_px)+')')


将图片压缩成列向量:

#reshape the training and test examples
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

print('train_set_x_flatten shape: ' + str(train_set_x_flatten.shape))
print('train_set_y_shape: ' + str(train_set_y.shape))
print('test_set_x_flatten shape: ' + str(test_set_x_flatten.shape))
print('test_set_y shape: ' + str(test_set_y.shape))
print('sanity check after reshaping: ' + str(train_set_x_flatten[0:5, 0]))


标准化数据集:

#standardize our dataset
train_set_x = train_set_x_flatten / 255.
test_set_x = test_set_x_flatten / 255.
print('train_set_x = ' + str(train_set_x[:, 0]))
print('test_set_x = ' + str(test_set_x[:,0]))

接下来就是和神经网络相关的几个重要组成部分的函数定义。注意:在定义和计算时,一定要使用numpy里的函数,这样可以实现vectorize,提高实现效率,这也是吴恩达在视频里一直强调的。

1. sigmoid函数定义

def sigmoid(z):
    s = 1 / (1 + np.exp(-z))
    return s
2. 参数初始化函数定义

def initialize_with_zeros(dim):
    w = np.zeros((dim, 1))
    b = 0
    
    assert(w.shape == (dim, 1))
    assert(isinstance(b, float) or isinstance(b, int))
    
    return w, b
3. 前后项传播函数定义:

#前项、后项传播
def propagate(w, b, X, Y):
    """
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
    
    Return:
    cost -- negative log-likelihood cost
    dw -- gradient of the loss with respect to w
    db -- gradient of the loss with respect to b
    """
    m = X.shape[1]
    #forward propagation (from X to cost)
    A = sigmoid(np.dot(w.T, X) + b)
    cost = -1./m * np.sum(Y * np.log(A) + (1 - Y) * np.log(1 - A))
    
    #backward propagation
    dw = 1 / m * np.dot(X, (A - Y).T)
    db = 1 / m * np.sum(A - Y, axis = 1, keepdims = True)
    
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    
    grads = {"dw" : dw,
             "db" : db}
    return grads, cost
4. 优化函数定义:

#optimization
def optimize(w,b,X,Y,num_iterations,learning_rate,print_cost=False):
    """
    This function optimizes w and b by running a gradient descent algorithm
    
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of shape (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- True to print the loss every 100 steps
    
    Returns:
    params -- dictionary containing the weights w and bias b
    grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
    costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
    
    Tips:
    You basically need to write down two steps and iterate through them:
        1) Calculate the cost and the gradient for the current parameters. Use propagate().
        2) Update the parameters using gradient descent rule for w and b.
    """
    costs = []
    
    for i in range(num_iterations):
        grads, cost = propagate(w, b, X, Y)
        
        dw = grads['dw']
        db = grads['db']
        
        #update rule
        w = w - learning_rate * dw
        b = b - learning_rate * db
        
        if i % 100 == 0:
            costs.append(cost)
        
        if print_cost and i % 100 == 0:
            print("cost after iteration %i: %f" % (i, cost))
            
    params = {'w' : w,
              'b' : b}
    
    return params, grads, costs 
5. 预测函数定义:

def predict(w,b,X):
    '''
    Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
    
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    
    Returns:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    '''
    m = X.shape[1]
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1)
    
    A = sigmoid(np.dot(w.T, X) + b)
    
    for i in range(A.shape[1]):
        if A[0,i] > 0.5:
            Y_prediction[0,i] = 1
        else:
            Y_prediction[0,i] = 0
    
    assert(Y_prediction.shape == (1, m))
    
    return Y_prediction
    


综合之前定义的函数,得到逻辑回归模型:

def model(X_train,Y_train,X_test,Y_test,num_iterations=2000,learning_rate=0.5,print_cost=True):
    """
    Builds the logistic regression model by calling the function you've implemented previously
    
    Arguments:
    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
    print_cost -- Set to true to print the cost every 100 iterations
    
    Returns:
    d -- dictionary containing information about the model.
    """
    
    ### START CODE HERE ###
    
    # initialize parameters with zeros (≈ 1 line of code)
    w, b = initialize_with_zeros(X_train.shape[0])

    # Gradient descent (≈ 1 line of code)
    parameters, grads, costs = optimize(w,b,X_train,Y_train,num_iterations,learning_rate,print_cost)
    
    # Retrieve parameters w and b from dictionary "parameters"
    w = parameters["w"]
    b = parameters["b"]
    
    # Predict test/train set examples (≈ 2 lines of code)
    Y_prediction_test = predict(w,b,X_test)
    Y_prediction_train = predict(w,b,X_train)

    ### END CODE HERE ###

    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

    
    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test, 
         "Y_prediction_train" : Y_prediction_train, 
         "w" : w, 
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}
    
    return d
设置一组参数,得到一个逻辑回归分类器:

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1000, learning_rate = 0.005, print_cost = True)


测试结果与真实标签的对比:

# Example of a picture that was wrongly classified.
index = 6
plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3)))
print ("y = " + str(test_set_y[0,index]) + ", you predicted that it is a \"" + classes[int(d["Y_prediction_test"][0,index])].decode("utf-8") +  "\" picture.")

输出如下:
y = 1, you predicted that it is a "non-cat" picture.

画出相应的代价曲线:
#plot learning curve(with costs)
costs = np.squeeze(d['costs'])
#print(costs.shape)
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("learning rate = " + str(d['learning_rate']))
plt.show()
输出的代价曲线:














  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值