生成树最小树形图 -- 朱刘算法详解

本文借鉴的博文: zephyr_pro dalao的blog

朱刘算法引入:
(把一道最小树形图当作最小生成树来做了,wa了后以为是bug像个sb一样d了半天)
最小树形图和最小生成树都是要求总权值最小,但区别是一个有向、一个无向。有向的最小树形图是不能用prim 或krustra算法来求解的。why?因为prim 或krustra算法只能适用无向图的环,不能适用有向图的环。

举个例子,如图:
在这里插入图片描述
图一是无向图,用prim或krustra算法求出的最小生成树总权值为1 + 3 + 2 = 6,而图二是有向图,他不是双向联通的,它用prim或krustra算法求出的最小树形图(树形图的根为1号节点)的总权值为1 + 3 + 4 = 8(这显然不对,正确的总权值应为1 + 4 + 2 = 7),到这里就应该了解了有向图和无向图的区别了,无向图是默认双向联通的,它可以很好的适用联通块思想,prim或krustra算法就是建立在联通块思想上的。而有向图因为有向所以不适用连通块思想,朱刘算法就是专门来解决最小树形图问题的。最小树形图其实就是有向图的最小生成树。

朱刘算法:

以下为主要算法流程:(不考虑缩点后的展开)

1,确定一个根

2,找到除根外每一个点的最小入边,若这些边构成了环(此时必然不联通),则缩环成点,并将环内的每一个点的其他入边都减去环内的入边,

3,重复步骤2直到没有环出现(构成了树)。

注意:
这是一个类似递归的过程,每次缩完点之后的点与其他点构成新图,不必考虑图是什么样的,我们只需要得到权值。这也是我之前陷入的一个误区。也就是说应当把缩完的点当做一个新点(正常的新点,不要和别的点分开,我们要平等的对待每一个点!)

一旦我们连上这条新边,这将意味着我们要放弃一条环内的边,显然树要求不能有2个父亲,因此我们要删去入边,但这并不好操作,

于是注意到我们的目标仅仅是权值,因此我们将每个点在环外入边的权值减去环内入边的权值,所以当我们连上一条新边时,

这样操作的实际效果在权值上和删去环内入边是等效的,只是减的地方不同而已,反正我们是求和。

放个百度百科上的图:
在这里插入图片描述
这个图就很好的表现出了朱刘算法解决最小树形图的算法过程。朱刘算法的精髓就是贪心加边压环成点减损补偿

hywc 的盗个dalao 的代码:

#include <cstdio>
#include <cstring>
 
const int MAXNODE = 1010;
const int MAXEDGE = 100010;
typedef int Type;
const Type INF = 0x3f3f3f3f;
 
struct Edge {
    int u, v;
    Type dis;
    Edge() {}
    Edge(int u, int v, Type dis): u(u), v(v), dis(dis) {}
};
 
struct Directed_MT{
    int n, m;
    Edge edges[MAXEDGE];
    int vis[MAXNODE];
    int pre[MAXNODE];
    int id[MAXNODE];
    Type in[MAXNODE];
 
    void init(int n) {
        this->n = n;
        m = 0;
    }
 
    void AddEdge(int u, int v, Type dis) {
        edges[m++] = Edge(u, v, dis);
    }
 
    Type DirMt(int root) {
        Type ans = 0;
        while (1) {
            //初始化
            for (int i = 0; i < n; i++) in[i] = INF;
 
            for (int i = 0; i < m; i++) {
                int u = edges[i].u;
                int v = edges[i].v;
                //找寻最小入边,删除自环
                if (edges[i].dis < in[v] && u != v) {
                    in[v] = edges[i].dis;
                    pre[v] = u;
                }
            }
 
            //如果没有最小入边,表示该点不连通,则最小树形图形成失败
            for (int i = 0; i < n; i++) {
                if (i == root) continue;
                if (in[i] == INF) return -1;
            }
 
            int cnt = 0;//记录缩点
            memset(id, -1, sizeof(id));
            memset(vis, -1, sizeof(vis));
            in[root] = 0;//树根不能有入边
            for (int i = 0; i < n; i++) {
                ans += in[i];
                int v = i;
                //找寻自环
                while (vis[v] != i && id[v] == -1 && v != root) {
                    vis[v] = i;
                    v = pre[v];
                }
                //找到自环
                if (v != root && id[v] == -1) {
                    //这里不能从i开始找,因为i有可能不在自环内
                    for (int u = pre[v]; u != v; u = pre[u]) 
                        id[u] = cnt;
                    id[v] = cnt++;
                }
            }
 
            //如果没有自环了,表示最小树形图形成成功了
            if (cnt == 0) break;
 
            //找到那些不是自环的,重新给那些点进行标记
            for (int i = 0; i < n; i++) 
                if (id[i] == -1) id[i] = cnt++;
 
            for (int i = 0; i < m; i++) {
                int v = edges[i].v;
                edges[i].v = id[edges[i].v];
                edges[i].u = id[edges[i].u];
                if (edges[i].u != edges[i].v) 
                    edges[i].dis -= in[v];
            }
            //缩点完后,点的数量就边了
            n = cnt;
            root = id[root];
        }
        return ans;
    }
}MT;
 
int main() {
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值