- 博客(9)
- 收藏
- 关注
原创 Yolov4 网络结构学习
Yolov4 CSPDarknet53 CSP本文主要是记录在学习YoloV4时遇到的CSPDarknet53网络结构文本参考睿智的目标检测30——Pytorch搭建YoloV4目标检测平台接触算法模型不久,有错误的话还望不吝批评。卷积块卷积块 = 卷积(Conv2d) + 标准化(BatchNormalization ) + 激活函数(Mish)卷积块代码实现#-------------------------------------------------## MISH激活
2022-03-01 17:52:50 990
原创 YoloV3 先验框
YoloV3 先验框本文主要是记录在学习YoloV3模型先验框作用和生成文本参考睿智的目标检测10——先验框详解及其代码实现,这篇博客其实写的非常详细,我在此处就不再展开,仅仅写一下个人学习理解有错误的话还望不吝批评。先验框目标检测|Anchor(先验框)的作用提前在图像上预设好的不同大小,不同长宽比的框,使得模型更加容易学习使用不同尺寸和长宽比可以得到更大的交并比,就有更高的概率出 现对于目标物体有良好匹配度的先验框(体现为高IoU)简单的一句话来讲,先验框就是帮助我们定好了常见目标
2022-03-01 15:07:08 2899
原创 YoloV3 FPN、Head
YoloV3 FPN、Head本文主要是记录在学习YoloV3时遇到的FPN以及Yolo Head文本参考睿智的目标检测26——Pytorch搭建yolo3目标检测平台,这篇博客其实写的非常详细,我在此处就不再展开,仅仅写一下个人学习理解接触算法模型不久,有错误的话还望不吝批评。先总览一下Yolov3模型结构(主干网络为Darknet53,左侧虚线框内)FPN、Yolo HeadFPN特征金字塔进行加强特征提取,主要解决的是物体检测中的多尺度问题。Yolo Head本质上是一次3x3卷
2022-02-28 17:29:41 2003
原创 YoloV3 Darknet53 残差网络Residual
残差网络Residual本文主要是记录在学习YoloV3时遇到的残差网络结构文本参考睿智的目标检测26——Pytorch搭建yolo3目标检测平台先总览一下Yolov3模型结构(主干网络为Darknet53,左侧虚线框内)对应的onnx网络结构截取部分onnx网络结构说明残差网络结构,我直接训练得到的是pth的模型,转成onnx后可视化结果比较直观一些需要注意的是在下面图片中BN被融合到Conv对应的残差结构代码#---------------------------------
2022-02-28 15:15:08 2199
原创 Libtorch前向推理
Libtorch前向推理前言使用流程我的环境模型转换前向推理代码前言初次使用Libtorch做前向推理,如有不足请各位指正。在使用Libtorch做retinaface算法的前向推理时发现不可以直接直接使用python训练时保存的是pth文件,报如下错误:terminate called after throwing an instance of 'c10::Error' what(): [enforce fail at inline_container.cc:143] . Pytorch
2021-07-15 12:55:26 948 2
原创 余弦相似度使用NEON指令加速
余弦相似度使用NEON指令加速背景参考资料公式仅使用cpp代码实现使用neon加速背景余弦相似度是通过计算两个向量的夹角余弦值来评估他们的相似度,原理非常简单,应用空间却非常广阔,如人脸特征求相似度,还有NLP领域求文本相似度等等.余弦相似计算在一般cpu上计算量其实并不大,但是如若人脸特征底库达到一定规模时,在求取最高相似度时速度问题就凸显出来了,特别是在ARM这样计算量十分有限的平台.所以很有必要对余弦相似计算进行优化加速.参考资料ARM与NEON指令加速神经网络arm neon加速实
2021-05-27 17:16:59 889
原创 TVM、Openvino、TNN、NCNN前向推理框架使用心得
TVM、Openvino、TNN、NCNN前向推理框架使用心得仅是个人开发过程中的一些心得, 不同的开发者应该有不同意见,当然我可能会有一些理解程度不够深入的地方,希望各位指正批评.一共五分,★★★☆☆表示得三分,其中"-"表示接触的不多,无法提供相关的使用心得TVMOpenVinoTNNNCNNAPI友好★★☆☆☆★★★★★★★★★☆★★★★☆社区★★★☆☆★★★★★★★★☆☆-开发难度★★★★★★★★☆☆★★★☆☆★★★☆☆速
2021-05-06 09:31:56 10320 11
原创 RetinaFace使用TNN、TVM、NCNN、Openvino实现
RetinaFace使用TVM、Openvino、TNN、NCNN、实现背景这几天用了TNN、TVM、NCNN、Openvino四个前向推理框实现RetinaFace再整理一下代码和文档就git开源了,包括代码、模型转换脚本先立flag,处理完工作,会陆续更新TVMOpenvinoTNNNCNN...
2021-03-17 15:48:49 2627 14
原创 RtinaFace Mxnet模型转TNN,附Reshape层踩坑
RtinaFace Mxnet模型转TNN,附Reshape层踩坑背景说明模型转换过程我的环境mxnet to caffecaffe to tnn [Reshape层踩坑]模型结果错误排查修复方法思考背景说明我从下面这个位置获取到的RetinaFace模型是mxnet的:yangfly: RetinaFace-MobileNet0.25 (baidu cloud:nzof).TNN提供的模型转换选项如下:{onnx2tnn,caffe2tnn,tf2tnn,tflite2tnn}并不支持m
2021-03-17 14:50:19 823
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人