Python3.4.3中yield 生成器

yield:生成器

任何使用yield的函数都称之为生成器,如:

Python代码   收藏代码
  1. def count(n):  
  2.     while n > 0:  
  3.         yield n   #生成值:n  
  4.         n -= 1  

 

另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成器包含yield语句,更简单点理解生成器就是一个迭代器。

使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调用next()方法返回序列值。

Python代码   收藏代码
  1. c = count(5)  
  2. c.__next__()  #python 3.4.3要使用c.__next__()不能使用c.next()
  3. >>> 5  
  4. c.__next__() 
  5. >>>4  

生成器函数只有在调用__next()__方法的时候才开始执行函数里面的语句,比如:

Python代码   收藏代码
  1. def count(n):  
  2.     print ( "cunting" )
  3.     while n > 0:  
  4.         yield n   #生成值:n  
  5.         n -= 1  

 

在调用count函数时:c=count(5),并不会打印"counting"只有等到调用c.__next__()时才真正执行里面的语句。每次调用__next__()方法时,count函数会运行到语句yield n处为止,__next__()的返回值就是生成值n,再次调用__next__()方法时,函数继续执行yield之后的语句(熟悉Java的朋友肯定知道Thread.yield()方法,作用是暂停当前线程的运行,让其他线程执行),如:

Python代码   收藏代码
  1. def count(n):  
  2.     print ("cunting" ) 
  3.     while n > 0:  
  4.         print ('before yield')  
  5.         yield n   #生成值:n  
  6.         n -= 1  
  7.         print ('after yield' )

 

上述代码在第一次调用__next__方法时,并不会打印"after yield"。如果一直调用__next__方法,当执行到没有可迭代的值后,程序就会报错:

Traceback (most recent call last): File "", line 1, in StopIteration

所以一般不会手动的调用__next__方法,而使用for循环:

Python代码   收藏代码
  1. for i in count(5):  
  2.     print (i),  

 

实例: 用yield生成器模拟Linux中命令:tail -f file | grep python 用于查找监控日志文件中出现有python字样的行。

import time  
def tail(f):  
    f.seek(0,2)#移动到文件EOF
    while True:  
        line = f.readline()  #读取文件中新的文本行
        if not line:  
            time.sleep(0.1)  
            continue  
        yield line  
  
def grep(lines,searchtext):  
    for line in lines:  
        if searchtext in line:  
            yield line

flog = tail(open('warn.log'))  
pylines = grep(flog,'python')  
for line in pylines:  
    print ( line, )
#当此程序运行时,若warn.log文件中末尾有新增一行,且该一行包含python,该行就会被打印出来
#若打开warn.log时,末尾已经有了一行包含python,该行不会被打印,因为上面是f.seek(0,2)移动到了文件EOF处
#故,上面程序实现了tail -f warn.log | grep 'python'的功能,动态实时检测warn.log中是否新增现了
#新的行,且该行包含python  


用yield实现斐波那契数列:

Python代码   收藏代码
  1. def fibonacci():  
  2.     a=b=1  
  3.     yield a  
  4.     yield b  
  5.     while True:  
  6.         a,b = b,a+b  
  7.         yield b  


调用:

Python代码   收藏代码
  1. for num in fibonacci():  
  2.     if num > 100:  
  3.         break  
  4.     print (num),  

yield中return的作用:
作为生成器,因为每次迭代就会返回一个值,所以不能显示的在生成器函数中return 某个值,包括None值也不行,否则会抛出“SyntaxError”的异常,但是在函数中可以出现单独的return,表示结束该语句。
通过固定长度的缓冲区不断读文件,防止一次性读取出现内存溢出的例子:

Python代码   收藏代码
  1. def read_file(path):  
  2.     size = 1024  
  3.     with open(path,'r') as f:  
  4.         while True:  
  5.             block = f.read(SIZE)  
  6.             if block:  
  7.                 yield block  
  8.             else:  
  9.                 return  

 

如果是在函数中return 具体某个值,就直接抛异常了

Python代码   收藏代码
  1. >>> def test_return():  
  2. ...      yield 4  
  3. ...      return 0  
  4. ...  
  5.   File "<stdin>", line 3  
  6. SyntaxError: 'return' with argument inside generator  


与yield有关的一个很重要的概念叫**协程**,下次好好研究研究。

参考:
http://www.cnblogs.com/huxi/archive/2011/07/14/2106863.html
http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/
《Python 参考手册》

转载来源:http://liuzhijun.iteye.com/blog/1852369


函数中使用yield,会返回一个生成器对象
>>> a=list((i**2 for i in range(1,11)))
>>> print(a)
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> def getNum(x):
y = 0
while y <= x:
yield y
y += 1



>>> g1 = getNum(10)
>>> type(g1)
<class 'generator'>
>>> g1.next()
Traceback (most recent call last):
  File "<pyshell#39>", line 1, in <module>
    g1.next()
AttributeError: 'generator' object has no attribute 'next'
>>> g1.__next__()
0
>>> g1.__next__()
1
>>> g1.__next__()
2
>>> g1.__next__()
3
>>> g1.__next__()
4
>>> g1.__next__()
5
>>> g1.__next__()
6
>>> g1.__next__()
7
>>> g1.__next__()
8
>>> g1.__next__()
9
>>> g1.__next__()
10
>>> g1.__next__()
Traceback (most recent call last):
  File "<pyshell#51>", line 1, in <module>
    g1.__next__()
StopIteration
>>> def genNum(n):
i = 1
while i < n:
yield i ** 2
i += 1



>>> g1 = genNum(20)
>>> for i in g1:
print(i)



1
4
9
16
25
36
49
64
81
100
121
144
169
196
225
256
289
324
361

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值