- 博客(701)
- 收藏
- 关注
原创 程序员挣够了钱,到中年失业真的很可怕吗?
最近一刷知乎全部都是大龄程序员失业危机真的有这么可怕吗?程序员35岁就真的到了瓶颈期?我不这么认为挣够了钱,当然不可怕,问题是没挣够啊~!!!按题主的算法是,大城市薪资1w以上,45岁失业,工作20年可以挣够钱:那我们现在来算一下,20年12个月1w=240w没错,这样算下来的确是可以挣到240w左右,但是你还有很多地方需要花钱,如:房租/房贷、孩子学费、赡养老人、家庭日常开支、朋友聚会……等等,这样全部算下来,你觉得你真的挣够钱了吗???而且按照题主说的是45岁失业,但现实是35岁很多程序员
2022-01-05 22:40:31 19816 37
原创 如果一名程序员一个月拿两万,得知一对夫妇卖猪肉可以赚五万一个月后会怎么选择,做程序员还是卖猪肉?
在知乎上看到这么个帖子,觉得挺有意思,大家一起瞧瞧?对此,我也看到了许多犀利的回答哈**A:**我反过来问你,如果一对夫妇卖猪肉一个月只能挣一万,听说一名程序员一个月拿五万,他们能选择去当程序员拿五万吗?这时候你知道不是谁都能当程序员,不是哪个程序员都能拿五万了,那你怎么就觉得谁都能卖猪肉、谁卖猪肉都能赚五万一个月了?你拿得动刀吗?你有超过常人的进货和销售渠道吗?你有人家的口碑吗?**B:**有时候可能会有一些莫名的优越感,将这个世界按照一条线性的赛道来理解,就像从小到大好好学习,一路考大学,唯一的
2022-01-04 21:58:55 15820 32
原创 一天高中的女同桌突然问我是不是程序员,满脸黑人问号?
背景昨天一个我高中的女同桌突然发微信问我“你是不是程序猿 我有问题求助”,先是激动后是茫然再是冷静,毕业多年不见联系,突然发个信息求助,感觉大脑有点反应不过来…再说我一个搞Python的,这点要求大家懂的,人生苦短,我用Python!为了大家的面子,为了程序猿们的脸,不就简单的小Python嘛,必须答应!梳理需求现有excel表格记录着 有效图片的名字,如:要从一个文件夹里把excel表格里记录名字的图片筛选出来;需求也不是很难,代码思路就有了:读取Excel表格第一列的信息并放入
2021-12-30 22:31:31 30845 36
原创 LLM实践系列-昇腾910B上进行Qwen2.5推理
异构 GPU 支持:支持异构 GPU 资源,当前支持 Nvidia、Apple Metal、华为昇腾和摩尔线程等各种类型的 GPU/NPU多推理后端支持:支持vLLM和推理后端,兼顾生产性能需求与多平台兼容性需求多平台支持:支持 Linux、Windows 和 macOS 平台,覆盖 amd64 和 arm64 架构多模型类型支持:支持 LLM 文本模型、VLM 多模态模型、Embedding 文本嵌入模型 和 Reranker 重排序模型等各种类型的模型多模型仓库支持。
2024-11-03 10:45:00 340
原创 机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws
想象这样一个场景:你正在火锅店和朋友畅聊,一个机器人熟练地为你倒饮料、端菜,完全不需要你分心招呼服务员。这个听起来像科幻的场景,已经被清华大学交叉信息院的研究者们变成了现实!他们发现了具身智能领域的 “圣杯”——data scaling laws,让机器人实现了真正的零样本泛化,可以无需任何微调就能泛化到全新的场景和物体。这一突破性发现,很可能成为机器人领域的 “ChatGPT 时刻”,彻底改变我们开发通用机器人的方式!研究团队可不是只在实验室里玩玩具。
2024-11-02 10:45:00 628
原创 论文分享 | 智能体相关研究进展
复杂的新闻事件,如自然灾害和社会政治冲突,需要政府和社会迅速反应。仅依赖历史事件来预测未来是不够的,因为这些事件稀少,并未涵盖所有可能的条件和细微情况。模拟这些复杂事件可以帮助更好地准备并减少负面影响。我们开发了一个可控的复杂新闻事件模拟器,它以事件框架为指导,该框架代表了关于场景的领域知识,同时考虑了用户提供的假设,反映了特定案例的条件。由于事件动态依赖于细致的社会和文化背景,我们进一步引入了一个地理多样性的常识和文化规范感知的知识增强组件。
2024-11-01 21:50:04 491
原创 图谱实战 | 知识图谱增强在 360 文档知识问答及管理中的应用实践
360 智能文档还可应用于文档总结、文档翻译、文档推荐。文档总结:在科研领域,快速进行论文总结,以及快速了解外文文献核心内容,提升论文筛选效率。在自媒体领域,很多公众号使用大模型自动生成问题,做成 FAQ 放到公众号。文档翻译:在完成文档总结之后,使用全文翻译进行精读。文档推荐:当预览某篇文档时,自动推荐相关文档给用户,还可以运用知识图谱关联网络做推荐。
2024-10-31 20:23:38 847
原创 如何选择生成式AI应用架构
看一下任何大型语言模型(LLM)的教学指南,其中推荐的用法包括调用API,向其发送提示(prompt),并使用返回的响应。虽然这在概念验证(PoCs)中是可以接受的,但使用将大型语言模型(LLM)仅仅当作另一个文本到文本(或文本到图像/音频/视频)API的架构进行生产部署,会导致在风险、成本和延迟方面,应用程序的设计欠佳。解决方案不是走向另一个极端,通过每次微调LLM并添加护栏等措施来过度设计你的应用程序。
2024-10-31 20:20:17 879
原创 StructRAG:通过推理时混合信息结构化提升 LLMs 的知识密集型推理
随着深度学习技术的发展,特别是大型语言模型(LLMs)的广泛应用,检索增强生成(RAG)方法在知识密集型任务中显示出强大的潜力。然而,现有的 RAG 方法在处理知识密集型推理任务中仍然面临挑战,因为这些任务所需的有用信息往往分布不均。这一特性使得现有的 RAG 方法难以准确识别关键信息,并在这种嘈杂的增强信息中进行全局推理。
2024-10-31 20:19:17 713
原创 Arxiv系列-论文干货 | 基于不确定性感知的证据融合半监督医学图像分割学习
本文提出了一种基于不确定性感知的证据融合半监督医学图像分割方法。该方法结合了证据深度学习的框架,通过融合跨区域的混合和原始样本的证据预测结果,重新分配每个体素的置信度和不确定性度量。此外,还设计了一种体素级渐近学习策略,通过引入信息熵与融合的不确定性度量相结合,以更精确地估计体素预测。实验结果表明,该方法在多个医学图像数据集上相较于现有技术取得了显著的性能提升。
2024-10-30 20:33:41 530
原创 多模态 Arxiv 2024/10/29 | 多模态生成卷疯了!Meta、小红书、Skywork AI 纷纷出招!
翻译摘要: 我们介绍MarDini,这是一个新的视频扩散模型系列,将掩模自回归(MAR)的优势融入统一的扩散模型(DM)框架中。在这里,MAR处理时间规划,而DM专注于空间生成在一个不对称网络设计中:i)基于MAR的规划模型包含大部分参数,使用低分辨率输入为每个掩模帧生成规划信号;ii)一个轻量级生成模型使用这些信号通过扩散去噪生成高分辨率帧。
2024-10-30 20:31:28 818
原创 刷新多模态医学图像报告生成新高度|AAAI 2023 山东大学&齐鲁医院推出多模态记忆Transformer!
MMTN: Multi-Modal Memory Transformer Network for Image-Report Consistent Medical Report Generation论文链接:https://arxiv.org/pdf/2303.13818代码链接:https://github.com/xiongyiheng/Prior-RadGraphFormer基于 Transformer 的编码器-解码器架构来生成医学图像报告。提出了一种多模态记忆transformer网络(MMTN)来
2024-10-30 20:28:49 755
原创 Nature Communications|基于少量样本学习的蛋白质语言预测模型!
准确地建模蛋白质适应度景观对于蛋白质工程具有重要意义。预训练的蛋白质语言模型在无需湿实验室实验数据的情况下预测蛋白质适应度方面已经达到了最先进的性能水平,但它们的准确性和可解释性仍然有限。另一方面,传统的监督深度学习模型需要大量的标记训练样本来提高性能,这构成了实际应用中的障碍。在这项工作中,作者引入了FSFP,这是一种能够在极端数据稀缺的情况下有效优化蛋白质语言模型用于适应度预测的训练策略。
2024-10-29 20:22:09 845
原创 发文利器一区文章思路,融合机器学习+预后模型+外部验证!
近年来,深度学习技术在基于全切片图像 (WSI) 的癌症预后和治疗效果预测方面取得了显著进展。基于深度学习的预后模型在应用于各种恶性肿瘤时,其性能优于几乎所有其他传统方法,显示出其在个性化医疗中的巨大潜力。这些开创性研究还表明,深度学习方法可以提取与预后相关的关键病理特征,这些特征是形态学上的决定因素。本研究选择肝内胆管癌 (iCCA) 来建立一个实用的深度学习模型,用于预后预测和深入解释。
2024-10-29 20:18:55 733
原创 逐行解析!李继刚大佬的神级AI提示词,藏了哪些秘密
如果要说,谁是国内提示词第一人那必须是李继刚老师今年重出江湖,一口气写了好多牛逼的提示词,尤其是这个汉语新解,相信大家多少都看到过类似的图片。这个适用Claude Sonnet的提示词,无论输入老板、老师、程序员、销售,随便给一个词,它都能自动生成一针见血的精辟解释卡片,整个AI圈子都传疯了。究竟什么样的提示词?能让一个圈子都沸腾起来,带着好奇,我也开始研究。相信很多朋友跟我一样,一脸懵逼,竟然看不懂!一般常见提示词①要么是角色》背景》任务》要求这条脉路,就像这样。
2024-10-29 20:17:44 693
原创 群晖NAS+Dify:AI原生应用部署教程,解锁大模型智能与工作流新境界
Dify是一个开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用。比 LangChain 更易用。
2024-10-28 20:12:16 1127
原创 告别文档解析,VisRAG带飞RAG,性能飙升37%
当前的RAG系统仅基于文本,这使得无法利用在现实世界中扮演关键角色的视觉信息,如。。在TextRAG中,解析后的文本作为检索和生成过程的基础。相比之下,VisRAG直接利用原始文档图像,通过使用基于VLM的检索器和生成器来实现。:一个基于VLM的RAG框架,它通过直接将文档图像嵌入到VLM中来检索和生成信息,从而。VisRAG包括两个主要组件:VisRAG-Ret(检索器)和VisRAG-Gen(生成器)。。
2024-10-28 20:09:35 626
原创 大家都说通义大模型好,究竟好在哪?
都说国产大模型“通义千问”能打,到底是真强还是智商税?今天就带你看看,这个国产“AI猛将”凭什么火出圈!如今的AI领域竞争激烈,提到大模型,许多人第一反应可能是GPT、Llama等大牌“选手”。然而,阿里巴巴的“通义千问”却让不少开发者拍案称好。今天,我们就来一起揭开通义千问的“好”是如何做到的。2023年4月,阿里巴巴推出通义千问,选择了“全开源”的策略,成为全球开发者关注的焦点。
2024-10-27 10:45:00 1038
原创 以小博大:大模型在医疗文本生成中的应用
2023年,Google推出的Med-PALM 2已经能够做到输入一幅X光片,自动来对患者的病情进行分析和诊断。并且,一个模型能够覆盖14个应用场景,平均准确率高达92.6%。“临床专家”Med-PALM 2甚至在回答临床问题中,Med-PaLM 2在临床实用性方面优于医生,包括事实性、医学逻辑推理能力和风险可能性。可以说,大模型的更新将AI从医学生提升到了高年资医生水平。大模型MedQA表现大幅提升。
2024-10-26 20:34:34 645
原创 一篇文章说清楚数据仓库架构!
数据仓库架构作为数据管理和分析的核心基础设施,扮演着关键角色。数据仓库架构是一个需要精心设计的体系,旨在整合来自不同数据源的海量数据,将其转化为有价值的信息,以满足企业各个层面的决策需要。随着技术的不断进步和优化,数据仓库架构也在不断演进和发展。本文就来谈谈目前常用的数据仓库架构,大致有4类:数据仓库集市架构、集中式架构、Lambda架构和Kappa架构。在企业信息化建设的过程中,为了高效支持多样化的业务主题,我们常常会面临选择独立的数据集市架构还是集中式架构的决策。
2024-10-26 20:33:26 867
原创 【论文精读】NeurIPS 2024[Spotlight] | CycleNet:通过建模周期模式增强时间序列预测
时间序列数据中存在的周期模式是进行长周期时序预测的关键。本文开创性地探讨了如何显式建模这种周期模式,以提升模型在长周期时序预测(LTSF)任务中的表现。具体而言,本文引入了残差周期预测RCF)技术,该技术利用可学习循环周期来建模序列中固有的周期模式,并对已建模周期的剩余残差分量进行预测。将RCF与简单的线性层或双层MLP结合,形成了本文提出的简单而强大的方法——CycleNet。CycleNet在电力、天气和能源等多个领域实现了最先进的预测准确性,同时通过减少90%以上所需的参数数量,提供了显著的效率优势。
2024-10-25 16:55:50 926
原创 突破传统RAG局限:GraphRAG如何提升大模型问答能力?
大模型存在不可避免的幻觉问题,这正是RAG(检索增强生成)发挥作用的地方。RAG通过连接外部数据源,将事实型知识引入大模型。但是,传统基于向量的RAG仍有其局限性,传统RAG是将数据分解成文本块,并独立检索这些片段,这可能导致遗漏信息片段之间的关系,缺乏全局视角。GraphRAG是一种正在兴起的RAG技术,利用知识图谱来表示数据和元数据,同时还可以将文本或节点嵌入到图中。GraphRAG通过将知识图谱融入检索过程,提升传统RAG的性能,更好地理解语义关联。
2024-10-25 16:53:55 538
原创 4.3k星星,开源版OCR神器,支持复杂文档布局和表格,利用GPT-4o-mini识别准确度超高
Zerox 使用 GPT-4o-mini 模型实现了一种无需手动训练的文档OCR解决方案。该项目能将 PDF、DOCX 和图像文件转换为 Markdown 格式,方便 AI 的进一步处理。支持批处理和格式保持,特别适用于包含复杂布局、表格和图表的文档。Zerox 提供了 Node 和 Python 两种语言的实现。
2024-10-25 16:51:58 793
原创 AnythingLLM+Ollama,能否打造你的专属个性化AI助手?
AnythingLLM是一个AI聊天系统,它允许用户构建自己的私人ChatGPT。与依赖云服务的AI工具不同,AnythingLLM支持本地开源和商用闭源的大语言模型(LLM),用户可以根据自己的需求和预算选择合适的模型。
2024-10-24 20:33:05 862
原创 LangChain 创始人万字科普:手把手教你设计 Agent 用户交互
什么是智能体?我几乎每天都会被问到这个问题。在 LangChain,我们构建工具帮助开发者创建大语言模型(LLM)应用程序,特别是那些作为推理引擎并与外部数据和计算资源交互的系统。这些系统通常被称为「智能体」。每个人似乎对智能体的定义都有些不同。我的定义可能比大多数人更加技术化:智能体是一个使用大语言模型(LLM)来决定应用程序控制流的系统。即便如此,我承认我的定义并不完美。人们通常认为智能体是高级的、自主的、类似人类的——但如果是一个简单的系统,LLM 只是在两条不同路径之间进行路由选择呢?
2024-10-24 20:31:55 1017
原创 还在 GPT-4o 进行评测么?快来试试开源评价大模型 CompassJudger
在进行主观评测的过程中,通常需要一个 Judge Model 来对待测模型的回复进行评分或比较,从而代替人类来进行这一评价工作,得到待测模型在各类主观题上的得分。过去,这往往是由能力较强的闭源模型如 GPT4 来进行的,GPT4 也因此成为了在 AlignBench,AlpacaEval,ArenaHard 等数据集上的标准评测模型。然而,在科学研究和模型迭代的过程中,往往需要进行大规模的评测,而使用闭源模型的成本非常高昂。
2024-10-24 20:30:06 851
原创 OpenAI o1 复现——过程奖励模型(PRM)
o1 作为 OpenAI 在推理领域的最新模型,大幅度提升了 GPT-4o 在推理任务上的表现,甚至超过了平均人类水平。o1 背后的技术到底是什么?o1 隐藏的长思维链是如何生成的?
2024-10-24 20:28:24 981
原创 如何高效生成定制微调数据集-CRAFT 微调数据集定制法
论文标题:CRAFT Your Dataset: Task-Specific Synthetic Dataset G论文链接:https://arxiv.org/pdf/2409.02098为特定任务构建高质量数据集是一个耗时且资源密集的过程,通常需要专业领域知识。论文提出了一种名为语料库检索与增强用于微调 (CRAFT) 的方法,用于生成合成数据集,前提是用户提供了少量示例来演示要执行的任务。
2024-10-23 20:17:55 915
原创 基于AI的投资组合策略,降低极端事件导致投资损失风险
在金融市场中,极端事件可能导致投资者蒙受重大损失。本文提出了一种旨在降低极端风险的投资组合策略。运用极值理论,评估了股票之间的极值依赖关系,并建立了反映这些依赖关系的网络模型。我们使用基于阈值的方法来构建这个复杂的网络,并分析其结构特性。为了提高风险分散,我们利用图论中的最大独立集的概念来制定合适的投资组合策略。由于在给定图中找到最大独立集是np困难的,我们使用基于扇区或基于社区的方法进一步划分网络。此外,我们使用风险价值和预期不足作为具体的风险度量,并将建议的投资组合的表现与市场投资组合的表现进行比较。
2024-10-23 20:15:47 660
原创 关于大模型在企业级应用中的选择问题疑问回复
企业级应用和平常学习是两回事,千万不能混为一谈大模型在企业级应用中面临的问题很多技术人员都习惯站在技术的角度来考虑问题,认为某项技术不好换一个就好了;又或者因为某些原因导致某些东西不能用。比如说,有些政府单位或银行保险部门还在使用xp系统和jsp做开发。所以很多人就认为政府单位的系统很拉垮,或者自己公司的技术经理脑子有问题,选的都是什么架构和技术栈;包括作者自己在前两年也是这种想法。但随着工作经验的增加,以及看待问题角度的改变,现在发现一个项目真的没那么容易给做起来,做好;
2024-10-22 20:13:34 610
原创 RAG总结及前沿之Meta-Chunking切分思路及VisRAG多模态实现机制解读
本文主要介绍了两个工作,一个是知识图谱用于RAG查询扩展的思路,属于知识图谱与RAG的结合范畴,一个是关于RAG发展的一个阶段性综述,提到的几个演化的点和未来的方向,值得看看。
2024-10-22 20:12:35 670
原创 又快又准的RAG Meta-Chunking,1.3倍提升,耗时减半
RAG效果在很大程度上依赖于检索到的文档的相关性和准确性。传统的基于规则或语义相似性的文本分块方法在捕捉句子间微妙的逻辑关系上存在不足。为了解决现有方法的局限性,提出了一种名为,旨在增强文本分割过程中的逻辑连贯性。(Margin Sampling Chunking)和。每个圆圈代表一个完整的句子,句子的长度并不一致。垂直线表示在哪里进行分割。图底部的两侧揭示了边缘采样分割(Margin Sampling Chunking)和困惑度分割(Perplexity Chunking)。
2024-10-22 20:11:38 545
原创 上海AI lab | Mono-InternVL:突破单体多模态大型语言模型的界限
内源性视觉预训练(EViP):一种新颖的视觉预训练方法,一个三阶段的渐进学习过程,包括概念学习、语义学习和对齐学习,以逐步提升模型的视觉知识和多模态能力,鼓励Mono-InternVL的视觉专家从嘈杂的数据到高质量的数据不断掌握视觉知识。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。这样的设计极大地促进了视觉预训练,同时保持了模型的效率。
2024-10-21 20:26:08 926
原创 开源项目 | 多模态大模型VITA:同时处理视频、图像、文本和音频
VITA,通过整合架构创新和先进的训练与发展策略,实现了这两个属性:1)统一框架,以端到端的方式处理文本、视觉和音频信号;2)实现自然多模态人机交互的能力。双语指令调优:首先,基于官方的Mixtral 8x7B模型,扩展其中文词汇量,并通过高质量的双语文本语料库进行进一步的指令调优,使其具备中文和英文的理解能力。多模态对齐和指令调优:其次,通过收集大量高质量的多模态数据,对文本特征空间与视频、图像和音频进行对齐,并引入状态令牌来识别输入查询的类型,从而实现端到端的交互。双工管道开发。
2024-10-21 20:25:13 667
原创 看一看 48Kstar 的Dify,是如何将 AI 研发的难度从天花板拉到地板之下的
说白了,Dify 既能满足零基础小白,也能为进阶开发者提供足够的发挥空间。比如说,你想要让 AI 模型对某些特定领域的数据有更好的理解能力?没问题,Dify 支持你接入自己的数据集进行训练,还可以定制特定领域的 AI 模型。这就好比你买了一辆车,车子本身性能已经很好,但你还可以根据自己的需求对车子进行改装,比如换个发动机、加装新设备,而 Dify 就是这台车的改装平台。
2024-10-21 20:22:47 992
原创 Transformer作者都在抢着发的方向!模型融合!分高不卷!
光是ICLR2025的投稿,其增长就跃升至前30,可见热度很高!但相比其他领域,总量还不大,相对蓝海,创新空间很大。其所以这么热门,是因为它能够通过结合多个模型的预测,来提高整体性能、减少过拟合风险!更为特别的是,在某些情况下,我们无需重新训练模型,只要利用已有的模型参数,就能进行融合,创建新的模型,从而节省大量的成本。最近Transformer作者,便通过自动化的模型融合策略,成功地创建了具有特定功能的新型基础模型,还实现了准确率飙升45.6%的效果。
2024-10-20 10:45:00 966
原创 11.5k星星!开源文字识别OCR,支持90种语言,还能识别布局和表格,数据处理实战派
Surya 是一个开源的OCR工具包,支持90多种语言的文本识别,具备文档的布局分析、表格检测和阅读顺序推断等功能。它可以处理复杂的文档类型,如含有多列文本、图像和表格的文件,适用于自动化文档处理和数据提取场景。Surya 通过整合多种技术来提高文本识别的准确性和效率,是文本分析与处理的有力工具。
2024-10-18 20:45:40 923
原创 Yi-Lightning:中国AI的骄傲,超越GPT-4o,推理速度提升40%!
是由零一万物公司最新推出的高性能、高速度旗舰模型。在国际权威盲测榜单LMSYS上,它一鸣惊人,超越了硅谷知名大模型如OpenAI的GPT-4o和Anthropic的Claude 3.5 Sonnet,排名世界第六、中国第一,这可是中国大模型在全球竞技场上的首次超越!
2024-10-18 20:44:44 927
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人