- 博客(1773)
- 收藏
- 关注
原创 程序员挣够了钱,到中年失业真的很可怕吗?
最近一刷知乎全部都是大龄程序员失业危机真的有这么可怕吗?程序员35岁就真的到了瓶颈期?我不这么认为挣够了钱,当然不可怕,问题是没挣够啊~!!!按题主的算法是,大城市薪资1w以上,45岁失业,工作20年可以挣够钱:那我们现在来算一下,20年12个月1w=240w没错,这样算下来的确是可以挣到240w左右,但是你还有很多地方需要花钱,如:房租/房贷、孩子学费、赡养老人、家庭日常开支、朋友聚会……等等,这样全部算下来,你觉得你真的挣够钱了吗???而且按照题主说的是45岁失业,但现实是35岁很多程序员
2022-01-05 22:40:31
20111
37
原创 如果一名程序员一个月拿两万,得知一对夫妇卖猪肉可以赚五万一个月后会怎么选择,做程序员还是卖猪肉?
在知乎上看到这么个帖子,觉得挺有意思,大家一起瞧瞧?对此,我也看到了许多犀利的回答哈**A:**我反过来问你,如果一对夫妇卖猪肉一个月只能挣一万,听说一名程序员一个月拿五万,他们能选择去当程序员拿五万吗?这时候你知道不是谁都能当程序员,不是哪个程序员都能拿五万了,那你怎么就觉得谁都能卖猪肉、谁卖猪肉都能赚五万一个月了?你拿得动刀吗?你有超过常人的进货和销售渠道吗?你有人家的口碑吗?**B:**有时候可能会有一些莫名的优越感,将这个世界按照一条线性的赛道来理解,就像从小到大好好学习,一路考大学,唯一的
2022-01-04 21:58:55
15961
32
原创 一天高中的女同桌突然问我是不是程序员,满脸黑人问号?
背景昨天一个我高中的女同桌突然发微信问我“你是不是程序猿 我有问题求助”,先是激动后是茫然再是冷静,毕业多年不见联系,突然发个信息求助,感觉大脑有点反应不过来…再说我一个搞Python的,这点要求大家懂的,人生苦短,我用Python!为了大家的面子,为了程序猿们的脸,不就简单的小Python嘛,必须答应!梳理需求现有excel表格记录着 有效图片的名字,如:要从一个文件夹里把excel表格里记录名字的图片筛选出来;需求也不是很难,代码思路就有了:读取Excel表格第一列的信息并放入
2021-12-30 22:31:31
31997
36
原创 GraphRAG实战终极指南!从0到1打通OpenAI+LangChain+Neo4j,收藏这篇就够了!
本文介绍了基于图结构的检索增强生成(GraphRAG)的实现流程,结合OpenAI和Neo4j技术。首先将文本转换为图结构,使用OpenAI API识别实体和关系;然后将生成的图数据存储到Neo4j图数据库中;最后通过提取用户问题中的实体进行图查询,结合大语言模型生成回答。以居里夫人传记文本为例,展示了如何将文本转换为包含人物、奖项、机构等实体及其关系的图结构,并存储到Neo4j中。该方法利用图数据库的优势实现复杂关系查询,为知识问答系统提供新的实现思路。
2025-12-20 13:46:14
235
原创 RAG维保终极指南:让AI“看图说话”!图文并茂答案的实现,收藏这篇案例就够了!
RAG一直被看成是大模型在企业应用落地的标准配置,基于企业内部文档的问答,已经解锁出大量使用需求和场景。在这些众多类型的文档中,有相当一部分包含了各类复杂图表,也就是所谓的多模态数据。
2025-12-20 13:44:41
356
原创 阿里开源RAG双雄!手把手教你用Qwen-Embedding+重排序模型,效果碾压主流方案
阿里巴巴Qwen团队发布了全新的**Qwen3 Embedding系列模型**,这是一套基于Qwen3基础模型构建的专用文本向量与重排(Reranking)模型。该系列模型凭借Qwen3强大的多语言理解能力,在多项文本向量与重排任务的Benchmark上达到了SOTA水平,其中8B尺寸的向量模型在MTEB多语言排行榜上排名第一。Qwen3 Reranker模型在多个评测基准上同样大幅超越了现有的主流开源竞品。
2025-12-20 13:41:16
433
原创 LangChain进阶全攻略:RAG核心应用与实践总结,一篇搞懂高效开发!
当下领先的大语言模型(LLMs)通过大规模数据训练来掌握广泛的普遍知识,这些知识存储在其神经网络的权重中。然而,如果要求LLM生成涉及其训练数据以外的知识(如最新、专有或特定领域信息),就会出现事实上的错误(称为"幻觉")。
2025-12-20 13:37:31
276
原创 告别“烧钱”时代!LoRA+QLoRA实战,让AI微调像“给软件打补丁”一样简单!
PEFT(参数高效微调)技术通过仅更新少量参数(1%-10%)来高效微调大型预训练模型,主要包括五类方法:附加式微调(如Adapter)、部分微调(选择关键参数)、重参数化微调(如LoRA)、混合微调和统一微调。其中LoRA技术通过低秩矩阵分解,将全量参数分解为两个小矩阵(A和B),仅训练这两个矩阵,显著减少计算量和内存占用。实验表明,LoRA能以0.01%的参数量达到接近全参数微调的效果,并降低2/3显存开销,实现快速训练和灵活任务切换,但在批量处理多任务时存在局限性。
2025-12-19 12:00:00
471
原创 RAG落地避坑指南:万字拆解真实场景优化全方案,收藏这一篇,少走半年弯路!
在过去两年中,检索增强生成(RAG,Retrieval-Augmented Generation)技术逐渐成为提升智能体的核心组成部分。通过结合检索与生成的双重能力,RAG能够引入外部知识,从而为大模型在复杂场景中的应用提供更多可能性。但是在实际落地场景中,往往会存在检索准确率低,噪音干扰多,召回完整性,专业性不够,导致LLM幻觉严重的问题。本文将聚焦RAG在实际落地场景中的知识加工和检索细节,如何去优化RAG Pineline链路,最终提升召回准确率。
2025-12-19 11:15:00
989
原创 Coze、Dify实战全攻略(超详细),从零基础到落地应用,收藏这篇就够了!
摘要:AI智能体技术快速发展,多智能体协同正重塑企业运营与个人办公方式。为应对技术门槛高、应用落地难等挑战,2026年1月将举办第三期AI智能体实战培训,涵盖Prompt工程、RAG知识库、Coze/Dify平台实操等核心内容,通过9大模块系统教学(含飞书自动化、智能客服等场景案例),帮助企业量化ROI并构建AI中台,同时指导个人用户实现办公提效。课程采用案例演示+实时实操模式,助力学员掌握智能体开发全流程技能。
2025-12-19 10:45:00
308
原创 (建议收藏)LangGraph+MCP构建工业级ReAct Agent,从入门到精通,这一篇讲透了!
智能决策: 基于ReAct范式的推理-行动循环,使决策过程更接近人类专家。工具集成: MCP协议确保工具的标准化和可扩展性,方便接入新的分析模型。实时响应: 异步执行提高系统响应速度,能够快速应对供应链变化。可解释性: 完整的推理过程和决策依据被记录下来,增强了AI决策的透明度。可扩展性: 模块化设计支持新工具、新数据源的快速集成。本文详细介绍了基于ReAct Agent技术架构的工业级供应链管理系统的设计与实现。完整的ReAct循环: 实现了观察-思考-行动的闭环决策过程。模块化工具集。
2025-12-19 10:30:00
916
原创 保姆级教程!手把手教你从0到1开发一个Agent框架,系统性搞定智能体开发!
2025 年,注定是 Agent 从技术概念走向商业主流的转折点。无论是企业还是个人,若想在这场智能化浪潮中不被淘汰,拥抱 Agent 已不再是选择题,而是生存题。
2025-12-19 10:00:00
620
原创 别再为读长文发愁了!大模型长文总结终极指南,3分钟搞定万字报告,这篇干货太顶了!
长文处理中,最好的方式就是分步处理,而不是一次性解决所有问题。在大模型应用中,长文本处理应该算是一个重点,也是一个难点;原因有二,一是因为大模型上下文窗口有大小限制,二是因为当文本过长时,大模型的处理能力会下降,导致文本丢失或理解偏差。但不能因为有问题就因噎废食,所以怎么用大模型解决这些问题?大模型长文本处理最近作者遇到一个需求,是根据审核结果生成一份专业的审核报告,但由于数据量较大导致上下文超长,因此需要解决这个超长问题。
2025-12-19 09:15:00
306
原创 内部流出!AI Agent系统高可用实践12篇(流式+多工具+协作),看懂这篇,薪资翻倍!
本文总结了构建现代AI Agent系统的12项关键工程实践经验,涵盖可观测性、安全性、用户体验等维度。核心建议包括:通过唯一trace_id实现链路追踪、工具调用的沙箱隔离、流式输出的断点续传、参数Schema校验、前后端状态同步、多模态输出协议等。其他重要实践涉及记忆分层存储、优雅降级策略、版本化管理、用户反馈收集、资源配额控制以及开发环境一致性。这些经验表明,构建生产级AI Agent系统需要系统性的工程思维,在确保安全可靠的同时提升用户体验和可维护性。随着AI技术发展,这些工程实践将帮助团队打造更具竞
2025-12-19 09:15:00
895
原创 大模型的“金鱼记忆”有救了!万字长文,手把手教你扩展上下文,小白也能看懂的硬核科普!
大模型上下文长度扩展技术综述 摘要:本文系统梳理了扩展解码器架构大模型(如GPT)上下文长度的关键技术。主要方法包括:1)改进位置编码(RoPE及其扩展技术),通过调整位置表示适应长序列;2)优化注意力机制(稀疏注意力),降低计算复杂度;3)引入外部记忆(RAG),存储和检索长文本信息;4)分割与滑动窗口,分块处理长文本;5)并行编码(CEPE),辅助编码器协同处理;6)提示压缩,精简输入信息。这些方法在技术难度、性能影响、资源消耗和部署成本上各具特点,适用于不同场景。位置编码改进是目前最经济高效的扩展方案
2025-12-18 13:00:00
1349
原创 2025年RAG技术全景图:从基础检索到Agentic智能体的终极进化路径
2023-2025年,检索增强生成(RAG)技术正经历从独立框架向智能体生态关键子模块的转型。尽管面临同质化、多模态处理等挑战,RAG在企业级应用中的价值持续凸显。本文指出2025年五大趋势:1)与Agent系统深度融合,实现动态记忆管理和多Agent协同;2)多模态RAG体系化建设,支持文本/图像/视频统一检索;3)行业定制化方案深化;4)混合搜索技术优化;5)成本与性能平衡创新。研究显示,多模态RAG已演进至3.0阶段,通过共享向量空间等技术显著提升跨模态检索能力。企业应重点关注动态数据库、任务分解模板
2025-12-18 10:19:31
687
原创 保姆级教程!LangChain实现RAG组合优化,从入门到精通,收藏这一篇就够了!
本文介绍了一种优化大模型RAG(检索增强生成)的方法——Adaptive RAG,通过整合多种优化策略有效解决幻觉问题。该方法包含三个核心机制:Routing(问题路由到不同检索方法)、Fallback(文档不相关时回退网络搜索)和Self-correction(修正幻觉答案)。系统采用模块化设计,包含路由判断、知识库检索、文档相关性评估、网络搜索和答案生成等环节,并引入循环校验机制确保答案质量。同时介绍了性能优越的nomic-embed模型在文本嵌入任务中的表现。该方案通过条件判断和多次验证的闭环流程,显
2025-12-18 10:16:12
756
原创 别再只谈大模型了!AI 的终极形态是 Agent,ReAct 框架一文搞懂,领先99%的人!
为什么这么说?因为具备 Agent 能力的先进模型(例如 Anthropic 的 Claude 4 系列,甚至包括更早的 Claude 3.7 和 OpenAI 的 GPT-5),已经通过训练把 ReAct 的本领“内化”进去了。换句话说,只要提供正确的工具接口和描述,这些模型自己就会规划步骤、调用工具来完成任务,不需要我们再手把手用 ReAct 提示去教它们该怎么做。
2025-12-18 10:08:31
592
原创 AI的“上帝之手”:不仅在ChatGPT,更在实验室和工厂里,悄悄改变世界!
微软亚洲研究院在NeurIPS 2025发表多项AI创新成果:CADMorph框架通过"规划-生成-验证"循环实现几何驱动的CAD参数编辑;CATTE算法提出复杂度自适应时序张量分解方法;SDIFT框架从稀疏观测生成物理动态全场演化;MIRA模型专注医疗时间序列处理;Omni-DNA支持基因组序列理解。这些研究突破AI在工程、科学和医疗领域的应用瓶颈,推动跨学科创新发展。
2025-12-17 13:39:05
907
原创 手把手教你激活推荐系统!来自闪购一线的复盘,多模态如何让点击率“原地起飞”?
本文系统梳理了推荐系统从传统协同过滤向多模态智能推荐的演进历程,重点分析了淘宝闪购场景下的多模态推荐实践与生成式ranking探索。文章首先回顾了传统ID特征推荐方法的局限性,进而详述了2018-2023年间注意力机制、图神经网络等技术的突破,以及2023年后大语言模型驱动的多模态推荐新范式。通过剖析小红书AlignRec、阿里妈妈SimTier&MAKE和快手QARM等代表性工作,总结了多模态表征对齐的三大技术路线(ID交互对齐、语义对齐和联合训练)及其融合方案。文章不仅分享了淘宝闪购场景的实践经
2025-12-17 13:38:10
625
原创 还在用RAG?你out了!给Agent装上“图谱”导航,让检索效果原地起飞,小白也能学会!
本文提出了一种创新的大语言模型多智能体系统检索方法——Agent-as-Graph,将智能体和工具作为平等节点构建知识图谱,解决了传统方法无法在统一空间中进行权衡的问题。该方法通过三步检索流程(向量初筛、加权RRF融合、图遍历聚合),实现了细粒度匹配与上下文保留的统一检索。实验显示,该方法在LiveMCPBench基准上Recall@5提升18.6%,且不依赖特定嵌入模型,具有优秀的跨模型泛化能力。最优权重配置为智能体:工具=1.5:1,通过可解释的参数调优机制,使运维人员能灵活调整系统性能。
2025-12-17 13:36:10
947
原创 别再让你的AI“瞎子摸象”了!Timbr GraphRAG:打通结构化与非结构化数据,让AI拥有“上帝视角”!
Timbr推出GraphRAG SDK,通过知识图谱技术革新RAG工作流。该方案无需图数据库,基于SQL实现结构化检索,利用本体论追踪关系并提取结构化事实。GraphRAG统一SQL和向量搜索,同时处理结构化数据和非结构化文本,为企业AI应用提供精准、可解释的答案,大幅提升准确性并减少幻觉问题。GraphRAG(基于图的检索增强生成)是一种新兴方法,它通过结合图驱动的结构化数据检索与基于向量的非结构化数据搜索,增强了传统RAG的能力。
2025-12-17 13:35:27
710
原创 别再只懂看图了!AI大神谢赛宁、李飞飞、LeCun联手,给AI装上“空间超感知”大脑!
摘要: 本文提出Agent-as-a-Graph,一种基于知识图谱的多智能体检索方法,解决传统代理选择不精准问题。通过将工具和代理统一表示为图谱节点与边,结合三步检索流程(向量搜索、加权重排序、图谱遍历),在LiveMCP基准测试中实现14.9%召回率提升和14.6%排序质量提升。实验验证了代理与工具协同检索的必要性,为复杂任务下的智能体调度提供新范式,具有显著的工业应用价值。
2025-12-17 11:59:48
344
原创 Dify+LangGraph王炸组合!手把手教你构建企业级多智能体系统,小白也能直接抄作业!
摘要:本文探讨了低代码平台Dify与专业编排框架LangGraph的融合趋势,为构建多智能体系统提供新路径。LangGraph作为LangChain开发的底层框架,专注于长时运行、有状态智能体的构建与管理,具备持久化执行、人机交互等核心特性。文章详细解析了二者的技术互补性:LangGraph负责智能体间的交互逻辑和状态管理,Dify则提供可视化构建和低代码开发能力。通过一个对话分析系统的实战案例,展示了如何利用Dify创建专业智能体,并通过LangGraph实现复杂编排,形成完整的"编排代码化,实
2025-12-17 11:59:10
242
原创 别再让Agent“不听话”了!掌握Prompt结构化设计,让AI指令精准、响应飞快!
在任务型 Agent 的开发过程中,Prompt 的结构化是决定其行为准确性和可靠性的基石。一个精心设计的 Prompt 能够清晰地向大语言模型(LLM)传达任务目标、提供必要的上下文、设定约束条件并规定期望的输出格式 [8]。随着 Agent 应用日益复杂,简单的纯文本 Prompt 已难以满足需求,催生了多种结构化格式的发展。这些格式大致可分为三类:基础标记语言、数据序列化语言以及新兴的专用标记语言。每种格式都有其独特的语法、优势和局限性,在可读性、机器解析效率和 Token 消耗方面表现出显著差异。
2025-12-17 11:55:31
320
原创 大模型+软件工程终极指南(附最佳实践),从入门到精通,收藏这篇就够了!
《2025年"大模型+软件工程"最佳实践报告》摘要:报告指出大模型技术正在重塑软件工程领域,重点分析了代码生成、调试、审查等六大核心应用场景,并提出六大实施建议。通过民生银行等13个行业案例,展示了AI在需求分析、开发测试等环节的实践成果(如AI代码采纳率达29%,交付效率提升18%)。报告强调开发者需具备专业验证能力,建议企业建立AI工具使用规范,通过指标评估效果。同时提供了从初阶应用到模型训练的四阶段学习路径,助力开发者掌握大模型技术。
2025-12-16 13:32:37
960
原创 内部流出!2025年AI大模型白皮书,把未来五年赚钱机会都给你说明白了(建议收藏)
《2025年AI大模型开发生态白皮书》核心看点摘要: 全球AI市场持续高速增长,预计2029年投资规模将突破1.2万亿美元。中美技术路线分化明显,中国开源生态快速崛起,阿里巴巴Qwen、智谱GLM等开源模型形成竞争优势。技术突破方面,多模态成为标配,MoE架构显著降低计算成本。AI应用加速落地,AI Agent市场规模将达230亿元,金融、医疗等垂直领域应用深化。开发者生态蓬勃发展,中坚人才需求激增,Hugging Face等开源社区推动技术创新。报告还提供了从入门到商业落地的完整学习路径,助力开发者掌握大
2025-12-16 13:31:44
948
原创 20分钟,你也能做多Agent语音系统!OpenAI新开源太简单了,入门到精通就看这篇!
让你开发一个语音智能体应用原型大概需要多久?3天?5天?今天OpenAI给出了一个答案:20分钟!没错,就在昨天,OpenAI官方发布了一个基于Realtime API开发的多层级高级AI Agent参考实现。这个项目一经发布就引起了很多开发者的关注,在Github上已经突破2000+星。
2025-12-16 11:02:24
924
原创 彻底搞懂AI智能体!万字长文深度解析,从CoT、ReAct到Plan-and-Execute,有这一篇就足够了!
基础依赖pip install langchain langchain-openai langchain-community# LangGraph(用于高级Agent功能)pip install langgraph# 工具依赖pip install tavily-python # 搜索工具pip install arxiv # 学术论文搜索pip install wikipedia-api # Wikipedia查询# 可选:监控和调试pip install langsmith。
2025-12-16 11:01:20
748
原创 Agent智能体终极指南!从入门到精通,搞懂认知架构看这篇就够了!
对于Agent的定义,似乎每个人心中都有不同的答案,Langchain 的创始人 Harrison Chase 是这样定义的,“Agent是一个使用大语言模型(LLM)来决定应用程序控制流的系统。”与其纠结Agent怎么定义,我更喜欢吴恩达之前在推特上面说的这样一句话,“与其争论什么应被归类为真正的智能体,不如承认系统具有不同程度的智能体特性(agentic)。”
2025-12-16 11:00:31
557
原创 别再死记硬背了!这才是智能体Agent的底层逻辑:思维链+函数调用,彻底讲清!
**“** 智能体是未来人工智能的一个重要应用技术,而其难点就在于怎么让大模型具备更好的独立思考和任务拆解与规划的能力。**”**Agent技术也被业界称为智能体技术,本质上是使得大模型具备独立思考和解决问题的能力;被广泛应用于各种应用场景,而且也被称为是实现通用人工智能的一种技术手段。
2025-12-16 10:59:32
780
原创 告别选择困难!MCP与Agent+Function Call全方位对比,收藏这篇就行!
本文围绕大语言模型(LLMs)智能应用中的工具与数据接入问题,系统介绍了两种主流方案:基于 Agent + Function Call 的动态调度机制与基于 MCP(Model Context Protocol)的标准化接入框架。通过梳理各自的工作原理、应用流程及典型实践,分析了不同场景下的适用性选择。同时,结合实际部署经验,探讨了两种模式在未来智能系统演进中的协同融合方向。
2025-12-16 10:58:48
742
原创 智能体架构深度解析!AI Agents从入门到精通,看完这篇就够了!
在这个循环中,generate_options 会根据当前状态和目标生成可能的行动或计划,evaluate_options 会应用推理或规划(例如模拟结果或使用启发式方法选择最佳方案),而智能体则逐步执行这些行动,并在必要时进行重新评估。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。如果你能在15天内完成所有的任务,那你堪称天才。
2025-12-16 10:56:01
922
原创 保姆级教程!有赞Agent从概念到落地,一篇讲透AI智能体的企业级应用
Agent 技术正在成为 AI 领域的热门关键词。2023 年至今,arXiv 上含「agent」关键词的论文数量持续攀升,2025 年截止到 4 月每月近千篇;工业界则先后涌现出 LangChain、CrewAI、LlamaIndex等数十种框架,并催生了编程、金融、法律等各种通用和垂直的 Agent 产品。
2025-12-16 10:55:00
1023
原创 阿里/字节大佬都在看的AI Agent秘籍!63页PPT流出,实现路径首次揭秘!
AI Agent是指具有自主性或半自主性的智能实体,能够利用人工智能技术在数字或物理环境中感知、决策、采取行动并实现目标。与Copilot、聊天机器人等相比,AI Agent能够自主规划和行动,实现用户预设的目标。
2025-12-16 10:53:32
696
原创 LLM幻觉终结者!SFT+RAG+知识图谱“王炸组合”,让大模型准确率飙升!
大型语言模型(LLM)在多个领域表现出了令人印象深刻的能力,但它们有很大的局限性,影响了它们的效用,特别是在生成准确和最新的信息时。一种被广泛采用的解决这些局限性的方法是检索增强生成(RAG),这是一种将LLM与外部知识库相结合的工作流,通过在运行时从可信来源提取数据来提供准确和当前的响应。 RAG可以显著减少幻觉,但不能完全消除幻觉。幻觉是LLM最持久的挑战之一。此外, RAG允许系统将一般知识与可能在模型预训练中无法很好表示的利基、领域特定信息无缝地连接起来。尽管有这些优势,RAG实现通常只关注非结构化
2025-12-15 13:59:40
579
原创 还在为多模态数据头疼?向量+图谱+关系模型,一套组合拳打穿所有技术瓶颈!
面向企业级AI落地的混合模型架构设计与实践摘要:在多模态数据爆炸式增长的背景下,单一模型因数据表征能力有限、关联分析维度不足,难以应对异构数据整合、复杂关系挖掘等核心挑战。向量模型凭借高维嵌入能力,可将文本、图像、音频等非结构化数据转化为具有语义特征的向量表示,实现跨模态数据的统一表征;知识图谱通过实体与关系的可视化建模,能够挖掘多模态数据间的隐性关联,构建结构化的语义网络;关系型模型则依托成熟的结构化数据管理体系,保障数据存储的规范性与查询的高效性。
2025-12-15 13:58:11
670
原创 医学里程碑!MM-GTUNets横空出世,攻克脑疾病预测难题,AI正式进军“大脑禁区”!
脑疾病病理复杂且影响广泛,临床诊断依赖多模态医疗数据但面临数据多样性与复杂性带来的精准诊断挑战。图深度学习(GDL)凭借整合多模态信息、刻画受试者间关系的优势成为群体脑疾病预测的重要方法。GDL可分为基于脑图和种群图两类方法,部分研究还融入图 Transformer 提升全局信息捕捉能力。然而,现有 GDL 方法仍存在非成像数据利用不充分、关键节点特征被忽视、跨模态交互深度不足等问题,且传统种群图构建依赖固定相似度,适应性和泛化能力有限,这些问题制约了预测性能,亟需更高效的多模态图深度学习框架。
2025-12-15 13:57:12
1279
原创 大模型微调迎来“王炸”!AMD亮剑新范式,效果媲美全量微调,成本却大幅降低!
近年来,参数高效微调(PEFT)方法因其在大幅减少可训练参数(通常少于2%)的同时保持良好性能而受到广泛关注。其中,低秩适配(LoRA)凭借其无需额外推理开销且性能优于其他PEFT方法的优势,成为主流选择。然而,LoRA受限于低秩假设,在复杂任务中常表现不足。
2025-12-15 13:56:25
1001
原创 告别手动“指挥家”!Agent Lightning实现全自动智能体编排,让多Agent协作快如闪电!
Agent Lightning 是微软最新推出的Agent智能体编排开发框架,旨在通过强化学习(RL)优化任何框架构建的 AI 智能体。该框架解决了当前 AI 开发中的一个关键痛点:现有智能体编排框架(如 OpenAI Agent SDK、LangChain)缺乏自动优化支持,而模型训练框架又难以处理智能体应用的复杂性。
2025-12-15 13:55:35
583
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅