自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1145)
  • 收藏
  • 关注

原创 程序员挣够了钱,到中年失业真的很可怕吗?

最近一刷知乎全部都是大龄程序员失业危机真的有这么可怕吗?程序员35岁就真的到了瓶颈期?我不这么认为挣够了钱,当然不可怕,问题是没挣够啊~!!!按题主的算法是,大城市薪资1w以上,45岁失业,工作20年可以挣够钱:那我们现在来算一下,20年12个月1w=240w没错,这样算下来的确是可以挣到240w左右,但是你还有很多地方需要花钱,如:房租/房贷、孩子学费、赡养老人、家庭日常开支、朋友聚会……等等,这样全部算下来,你觉得你真的挣够钱了吗???而且按照题主说的是45岁失业,但现实是35岁很多程序员

2022-01-05 22:40:31 19993 37

原创 如果一名程序员一个月拿两万,得知一对夫妇卖猪肉可以赚五万一个月后会怎么选择,做程序员还是卖猪肉?

在知乎上看到这么个帖子,觉得挺有意思,大家一起瞧瞧?对此,我也看到了许多犀利的回答哈**A:**我反过来问你,如果一对夫妇卖猪肉一个月只能挣一万,听说一名程序员一个月拿五万,他们能选择去当程序员拿五万吗?这时候你知道不是谁都能当程序员,不是哪个程序员都能拿五万了,那你怎么就觉得谁都能卖猪肉、谁卖猪肉都能赚五万一个月了?你拿得动刀吗?你有超过常人的进货和销售渠道吗?你有人家的口碑吗?**B:**有时候可能会有一些莫名的优越感,将这个世界按照一条线性的赛道来理解,就像从小到大好好学习,一路考大学,唯一的

2022-01-04 21:58:55 15874 32

原创 一天高中的女同桌突然问我是不是程序员,满脸黑人问号?

背景昨天一个我高中的女同桌突然发微信问我“你是不是程序猿 我有问题求助”,先是激动后是茫然再是冷静,毕业多年不见联系,突然发个信息求助,感觉大脑有点反应不过来…再说我一个搞Python的,这点要求大家懂的,人生苦短,我用Python!为了大家的面子,为了程序猿们的脸,不就简单的小Python嘛,必须答应!梳理需求现有excel表格记录着 有效图片的名字,如:要从一个文件夹里把excel表格里记录名字的图片筛选出来;需求也不是很难,代码思路就有了:读取Excel表格第一列的信息并放入

2021-12-30 22:31:31 31077 36

原创 赶在deepseek-r2之前,阿里发布全球最强开源模型Qwen3,4张H20即可部署满血版

最近几天,开源大模型是异常活跃。从前几天有爆料deepseek-r2即将发布的消息:到昨天Qwen3短暂发布又撤回:再到今天Qwen3正式发布。感觉就像一场军备竞赛,阿里这次终于抢在了deepseek-r2发布之前发布了Qwen3!接下来的压力给到了DeepSeek,毕竟万一后发者在各方面没能超越对方的话,这一版本的努力影响力就要小很多了。的超强表现。

2025-05-04 10:45:00 411

原创 Meta AI 开源全新原生多模态 Llama4!公开训练策略

Llama团队发布了系列中的首批模型,这些模型将使人们能够构建更个性化的多模态体验。,一个拥有 170 亿活跃参数和 16 个专家的模型,是同类中全球最佳的多模态模型,比前几代Llama模型更强大(),且能适配单个H100 GPU。此外,Llama 4 Scout 提供业界领先的 1000 万 token (大致相当于 500 万个字)上下文窗口,在基准测试中表现优于 Gemma 3、Gemini 2.0 Flash-Lite 和 Mistral 3.1。

2025-05-03 10:45:00 1159

原创 Cherry Studio 新版本 1.2.9 一键式添加MCP服务器

这种方式进一步简化了MCP服务的添加,只需要在ModelScope中开通服务,在Cherry Studio客户端同步就行了。虽然使用很方便,不过它是有一定限制的,只支持 Hosted 类型的服务,像filesystem本地文件系统访问的mcp服务是无法通过这种方式添加的;如果Hosted类型的服务需要额外设置的话,比如高德地图是需要用户去高德主页上申请API Key的,这一步还是无法跳过的。

2025-05-02 10:45:00 546

原创 JACS︱多智能体驱动的机器人AI化学家

研究展示了多智能体驱动型机器人AI化学家的最新研发成果。构建了基于Llama-3.1-70B大语言模型(LLM)的分层多智能体系统–ChemAgents。ChemAgents整合了多种基于LLM的专用智能体,既可独立执行复杂科研任务,又能通过协同合作实现更高效能。该系统通过任务管理器代理与人类研究人员交互,并协调四大基础资源:全面文献数据库、广泛协议库、**ChemAgents的四大基础资源每个代理分别利用四大基础资源:全面文献数据库、广泛协议库、多样化模型库和最先进的自动化实验室(图1)。

2025-05-01 10:45:00 650

原创 1篇搞懂贝叶斯因果发现:如何用数据构建因果网络?理论详解与开源落地

贝叶斯定理构成了贝叶斯网络的基础。贝叶斯规则本身用于更新模型信息,其公式如下:公式:贝叶斯规则。图片作者自绘。这个公式包含四种概率。让我们逐步分解它们。其中最常用的便是先验概率(prior),也称为信念概率它是基于已有知识或历史信息,在观察到证据之前对某一事件发生可能性的假设。例如,医生在实验室结果出来之前,根据患者的症状和年龄,可能会相信患者患有某种疾病的几率为 20%。或者在一个多云的日子,您相信下雨的几率有 80%,于是带着伞出门。公式中的另一种概率是条件概率。

2025-04-30 20:45:09 543

原创 Qwen3 发布,第一时间详解:性能、突破、训练方法、版本迭代...

今天凌晨,Qwen3发布介于 DeepSeek 和 OpenAI 暂无动静,Qwen 算是把头条保住了,恭喜~,和。

2025-04-29 20:26:14 1224

原创 ICLR上新 | 多模态与决策智能的前沿探索

随着人工智能技术的不断发展,多模态模型、决策智能等领域的研究逐渐成为推动人工智能进步的关键方向。在 ICLR 2025 的第二期精选论文中,微软亚洲研究院聚焦于人工智能的多模态模型、推理和决策制定等方向,旨在为大语言模型(LLMs)在处理复杂任务时提供更高效和智能的解决方案,同时为人工智能技术的实用化和普及化贡献一份力量。论文链接:项目链接:在人工智能领域,尤其是“文本-视频”(Text-to-Video, T2V)模型的研究中,如何高效生成具有丰富动态和时间一致性的长视频一直是一个挑战。

2025-04-29 20:25:10 754

原创 多agent代理的7种设计模式

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

2025-04-28 20:36:29 753

原创 从困局到破局的AI+数据分析

数据是新时代的石油,人工智能是炼油厂。当两者强强联合,一场数据分析的革命正悄然发生。多少次你面对Excel发愁?多少次为了一份报告熬夜加班?多少次因为不懂SQL被卡在数据获取的门槛前?现在,这些痛点都将成为过去。AI+数据分析正在重塑我们的工作方式,让每个人都能成为数据分析师。你所在的公司刚刚启动了一个数据驱动决策的项目。老板指派你负责,。老板希望看到精准的数据报告和有价值的业务建议,而不是感性的"我觉得"。如果企业决策者不重视数据驱动,你精心准备的分析报告只会石沉大海。

2025-04-28 20:35:02 665

原创 Spring-ai-Alibaba整合QwQ_32b

deepseek国内大模型一哥的屁股都没坐热, 阿里又来了个qwq-32b。但是没关系, 如果你用spring-ai(或者Spring Cloud Alibaba AI)改个配置即可适配(温馨提醒:qwq-32b和deepseek-r1一样不支持function-call)

2025-04-28 20:33:05 653

原创 Transformer原作、斯坦福、清华交大三篇论文共识:基座模型边界锁死RL能力上限

1、能力来源(source)语言模型的推理能力 = f(模型架构, token量, 训练数据多样性, 泛化能力)2、RL的作用(作用机制)RL ≈ 一个奖励驱动的路径偏移器将已存在于模型分布中的推理路径偏移为更高 reward 的选项提高成功率,但不生成新“知识”或“能力”3、提升路径(有效方向)想要获得新的 reasoning 能力 ≠ 强化训练需要更强的知识/经验(知识注入+架构优化+认知行为引导)RL不是创造能力,而是优化选择。

2025-04-27 11:23:14 838

原创 国内最权威的三大LLM安全榜单全解析

AI Safety Benchmark是由中国信息通信研究院(简称“信通院”)组织发起的大模型安全评测榜单。从2024年Q1开始,坚持每个季度发布一次,迄今已经发布四次。评测采取的是邀请制,匿名发表测评结果,且每次评估侧重点会结合业界动态更新。2024年Q1测试以模型的内容安全为核心测评目标,涵盖了内容安全、数据安全和科技伦理等三大测试维度,并进一步细分了20余个细粒度的测评类别。2024年Q2测试以模型安全为核心测评目标,应用多种攻击手段对大模型开展对抗性测试。

2025-04-27 11:22:01 917

原创 Qwen 的训练数据是怎么做的?

已被证明是开发强大大型语言模型的关键因素,这一点在之前的研究中中得到了强调。为了创建一个有效的预训练数据集,确保数据的多样性并涵盖各种类型、领域和任务至关重要。我们的数据集旨在满足这些要求,并包括等。此外,我们的数据集是的,其中很大一部分数据是用英语和中文编写的。为了确保我们预训练数据的质量,我们开发了一套全面的数据预处理流程。对于,我们,并使用来。为了增加数据的多样性,我们采用了,包括在规范化之后的以及使用。为了,我们采用了的组合。具体来说,我们,包括以及用于。我们还从各种来源,以确保其质量。

2025-04-27 11:21:02 1087

原创 Nature连发两篇!DeepSeek在临床诊疗方面的应用与ChatGPT效果相当

一起看看国产DeepSeek表现如何?大型语言模型(LLM)正在日益改变医疗应用。,研究者将它们在临床决策支持任务上的表现与专有LLM(包括GPT-4o和Gemini-2.0 Flash Thinking Experimental)进行了基准测试。使用125例具有足够统计效力的患者病例,涵盖了广泛的常见和罕见疾病,对于第一个临床决策任务-诊断,Gem2FTE的表现明显优于DeepSeek-R1 和GPT-4o。对于第二次临床决策任务-治疗,GPT-4o和DeepSeek-R1均表现优于Gem2FTE。

2025-04-26 10:45:00 1014

原创 使用 LangChain + Higress + Elasticsearch 构建 RAG 应用

Higress 是一款云原生 API 网关,内核基于 Istio 和 Envoy,可以用 Go/Rust/JS 等编写 Wasm 插件,提供了数十个现成的通用插件。Higress 同时也能够作为 AI 网关,通过统一的协议对接国内外所有 LLM 模型厂商,同时具备丰富的 AI 可观测、多模型负载均衡/fallback、AI token 流控、AI 缓存等能力。

2025-04-25 20:51:45 853

原创 大模型应用开发Spring AI实战-开发自己的MCP应用

MCP (Model Context Protocol)是一种开放协议,它标准化了应用程序向 LLM 提供上下文的方式。可以将 MCP 视为 AI 应用程序的 USB-C 端口。正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一种将 AI 模型连接到不同数据源和工具的标准化方式。MCP 是 Claude (Anthropic) 主导发布的一个开放的、通用的、有共识的协议标准。MCP 可帮助用户在 LLM 之上构建代理和复杂的工作流程。

2025-04-25 20:49:53 655

原创 为Agent及MCP设计的安全网关,有开源

近日,Invariant Labs发布了其针对Agent防护的产品Invariant Guardrails,支持工具调用、MCP 以及数据流控制和上下文约束。Guardrails 旨在提供一个强大而灵活的框架,以确保人工智能代理的安全性和可靠性,并专注于情境护栏。Invariant Guardrails 是一个基于规则的全面防护层,适用于 LLM 或 MCP 驱动的 AI 应用程序。它部署在您的应用程序与 MCP 服务器或 LLM 提供程序之间,无需进行任何侵入性代码更改即可实现持续的转向和监控。

2025-04-24 10:41:31 882

原创 Agent系列教程01-什么是Agent?当今为什么这么重要?

传统 AI 模型和 Agent 之间的区别是微妙但意义深远的。当我们与 AI 模型(例如 Gemini、o1、Sonnet 或类似的大型语言模型)交互时,本质上是在进行一系列一次性的互动:我们提供输入,模型处理输入,然后返回输出。虽然这些互动可能很复杂,但它们从根本上来说是被动的、无状态的。这听起来可能只是一个细微的区别,但它代表了 AI 系统运作方式和它们能够实现的目标的根本性转变。想想我们今天有多少人使用 AI聊天界面。你可能会要求 ChatGPT 从头到尾写一篇文章,并得到一个。

2025-04-24 10:39:54 640

原创 模型内隐式推理范式演进:推理模型在训练时与推理时如何突破“显式CoT”瓶颈?

这种修改尝试在模型隐层中将传统以语言空间形式化嵌入为基础的推理过程转化为隐性连续思维表征。由于连续思维完全可微,因此可以通过梯度下降对系统进行端到端优化。另外为了增强潜在推理的训练,采用了多阶段训练策略,该策略亦有效地利用语言推理链来指导训练过程。1.2 BFS式探索与动态纠错。

2025-04-24 10:38:04 1081

原创 大模型训练为啥要分为预训练、后训练与微调3个阶段?

大模型训练的三个阶段——预训练、后训练和微调,是构建高效、智能且适应性强的模型的关键步骤。预训练为模型奠定了通用知识基础;后训练强化了模型在特定领域的专业能力;微调则使模型能够精准适配具体任务。这种分阶段的训练策略不仅提高了资源利用效率,还逐步提升了模型性能,增强了模型的适应性和灵活性。

2025-04-23 20:25:17 1051

原创 真实场景下落地RAG的十条建议及RAG中如何提升个性化?

RAG无处不在、无孔不入,却又缝缝补补,且出现了诸如GraphRAG、多模态RAG、Deepresearch等许多变体。RAG的方案人手一份,但是依旧在实际落地过程中出现各类问题。昨晚,老刘在A2M人工智能创新峰会预热线上分享中进行《》主题报告,讲了一些有趣的事情,在结尾的时候,给出了这10条建议,供各位参考:1、,尤其是NL2SQL,KBQA这种类型,之前解决的很好的就不要再折腾了。2、,GraphRAG、多模态RAG、DeepResearch等能不上就不要上,把最基本的RAG做出来就好。3、

2025-04-23 20:24:07 635

原创 raptor + graphrag = HiRAG,开源~

论文笔记, 标题:Retrieval-Augmented Generation with Hierarchical Knowledge, 代码开源:https://github.com/hhy-huang/HiRAG二者结合一下,应该就是这篇文章的核心要点了。相似或者相关的实体,可能没有一个有效的物理连接,所以graphrag没法将他们聚类成社区。那不如给实体聚类,抽象一层出2级实体。这个层级可以持续上去,一个簇的描述,可以用LLM总结。越往上,就越抽象,这个符合raptor的理念。

2025-04-22 11:55:50 748

原创 从“人治”到“智治”:AI大模型数据治理体系(附交付物)

数据治理的未来趋势,基于。

2025-04-22 11:54:42 892

原创 FloodCastBench: 大规模洪水建模与预测数据集及基础模型

这些数据集具有30米×30米的空间分辨率和300秒的时间分辨率,包括低保真和高保真的洪水预测数据,以及用于跨区域转移性的洪水动态结果。然而,该数据集也存在一些局限性,如洪水动态数据的不确定性需要通过其他时间序列水文数据进一步验证,洪水预测任务目前仅限于20个时间步长,由于GPU内存限制,对于更长时间的预测(如巴基斯坦2022年洪水的14天或澳大利亚2022年洪水的10天),建议使用更大内存容量的GPU或采用序列到序列的神经预测方法。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

2025-04-22 11:52:43 803

原创 最新论文 | 慕尼黑工业大学团队提出GeoLangBind, 统一六种遥感数据模态的视觉-语言模型

题目:GeoLangBind: Unifying Earth Observation with Agglomerative Vision-Language Foundation Models期刊:https://arxiv.org/abs/2503.06312代码:https://github.com/xiong-zhitong/GeoLB-SigLIP单位:慕尼黑工业大学,赫姆霍兹德累斯顿罗森多夫研究中心HZDR。

2025-04-21 20:19:58 699

原创 基于Agent生成markdown接口文档

通常需要swagger注解来生成接口文档,但要写n多注解,如果增加案例的话,手都写算了,懒人自然有懒人的办法,本文基于大模型Agent来动态生成。采用Autogen的技术框架,展现采用pyQT我需要知道项目的一些基本信息,然后使用Agent去自动查询相关文件,最终生成markdown文件。先初始化一些项目信息其次我需要封装一个LLM,这里我使用DeepSeek,其他的大模型也可以。编写一些工作类,比如读写文件,我还需要记住一些读取信息,避免不停的读文件需要构建几个智能体对他们进行封装,提示词可以自行优化。

2025-04-21 20:19:01 737

原创 AI开发者必学:一分钟掌握Function Calling的用法与实操

Function Call 是大模型在对话过程中调用外部函数的能力,它允许模型在无法直接回答问题时,返回一个函数调用请求,而不是生成文本。开发者需要手动解析这个请求,执行对应的函数,并将结果传回给模型,以生成最终答案。通俗地讲,Function Calling允许模型返回一个结构化的“函数调用请求”,告诉你的程序:“我建议调用哪个函数,以及具体用什么参数”。但需要注意的是,模型本身。

2025-04-21 20:17:47 939

原创 RAG中的表格数据序列化思路及R1类推理大模型训练实证分析

本文主要回顾了两个工作,一个是RAG中的表格处理问题,如何进行序列化。另一个是RL用于推理模型的一些分析,其中的一些分析结果其实还蛮有趣的,虽然有些实验限制,但结果依然有指导性。

2025-04-20 10:45:00 733

原创 5000字!一文看懂大模型量化技术

大模型量化技术是一种通过减少模型参数的存储和计算精度来优化模型性能的技术。其核心原理是将模型中的浮点数参数(如32位浮点数)转换为低位宽的数值表示(如8位整数),从而在不显著降低模型精度的前提下,大幅减少模型的存储空间和计算资源消耗。降低存储需求:大模型通常包含数十亿甚至数千亿个参数,以浮点数形式存储会占用大量内存。量化技术可以将浮点数参数转换为低位宽的整数,显著减少模型存储空间。例如,将32位浮点数量化为8位整数,存储空间可减少4倍。加速计算:在硬件上,整数运算通常比浮点数运算更快。

2025-04-19 10:45:00 1014

原创 AI多模态场景对数据管理带来的挑战有哪些?

在数据应用场景中,数据源属于数据管理是非常的一个环节,包括数据源、数据集成、生命周期、数据地图、数据标注、数据安全、主数据等等等,数据管理也是整个数据治理体系中最核心的部分之一,面向智算领域的数据能力,对于AI数据治理会有一些新的挑战。在过去数十年的大数据领域发展过程中,结构化数据和半结构化数据处理都是其中绝对的主角,结构化和半结构化数据由业务流程产生,与商业价值高度相关,这些数据与企业的流程业务及商业化息息相关,SAAS软件领域也逐渐演化出了非常成熟的产品及处理能力。关于数据类型的对比。

2025-04-18 21:43:56 824

原创 ICLR‘25 Oral | 大型语言模型微调的学习动态

用以解释在**离线直接偏好优化(Off-Policy Direct Preference Optimization, DPO)**中观察到的现象,即运行DPO时间过长会使期望的输出结果变得不太可能。这一框架还揭示了在线DPO和其他变体的益处来源。这种分析不仅为理解大型语言模型的微调提供了新的视角,还启发了一种简单而有效的方法来提高对齐性能。

2025-04-17 20:40:04 589

原创 详解A2A(Agent2Agent)协议

A2A(Agent2Agent)协议 是由 Google Cloud 推出的一个开放协议,旨在促进不同 AI 代理之间的互操作性。其主要目标是允许这些代理在动态的、多代理的生态系统中进行有效的通信和协作,无论它们是由不同的供应商构建的还是使用不同的技术框架。A2A(Agent2Agent)协议的设计原则旨在提升代理之间的协作能力,确保灵活性、安全性和与现有系统的兼容性。拥抱代理能力• 允许代理在其自然、非结构化的模式下进行协作,无需共享内存、工具或上下文,从而实现真实的多代理场景。基于现有标准构建。

2025-04-17 20:34:51 1078

原创 聊聊 LLM 推理引擎中,那些已经成为事实标准的优化方法

本文主要是记录目前在各个LLM推理引擎中经常使用的一些方法。

2025-04-17 20:31:54 373

原创 智能问数系统技术架构解析:从自然语言到业务洞察的自动化之路

该架构已超越传统问答系统范畴,正在演进为企业级的认知计算中枢。其核心价值不在于技术组件的堆砌,而在于构建了业务语义与数据计算之间的"转化场",使得数据资产能够以业务语言的形态直接参与价值创造。这种转化能力的工业化实现,标志着企业智能化建设进入了"语义即服务"(Semantics as a Service)的新纪元。

2025-04-17 20:30:56 749

原创 DataAgent是最容易落地的Agent场景?

市场上已有多个成功的。

2025-04-16 20:29:28 765

原创 Nature Reviews Materials | 大型语言模型在框架化学中的三类应用:数据挖掘、结构设计与合成自动化

框架化学是将分子构建单元连接成晶体扩展结构的科学,如金属-有机框架和共价有机框架。大型语言模型(LLMs)是一种生成性人工智能系统,可以通过帮助科学家从文献中提取知识、设计材料以及收集和解释实验数据来增强网状化学的实验室研究,从而最终加速科学发现。在这个视角下,

2025-04-16 20:28:39 716

原创 揭秘DeepSeek R1-Zero训练方式,GRPO还有极简改进方案

最近一段时间,人工智能领域正在迎来变革。DeepSeek-R1-Zero 通过引入类似 R1-Zero 的训练范式彻底改变了大语言模型(LLM) 后训练的流程:直接将 RL 应用于基础 LLM,而不依赖任何监督微调(SFT) 作为初步步骤。这种新范式因其简单性和已证明的 RL 扩展现象而具有吸引力:模型推理能力随着模型响应长度的不断增加而提高。这种现象还伴随着「顿悟时刻」(Aha Moment),此时模型展现出了人类一样的自我反思等新兴技能,让人们见证了强化学习的力量和美感。

2025-04-15 11:53:01 576

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除