求两个字符串的编辑距离

// 求两个字符串的编辑距离
 int editMinDistance( const char *s1, const char *s2 )
    {
        int dist = 0;

        if( NULL == s1 && NULL == s2 )
        {
            return dist;
        }

        if( NULL == s1 )
        {
            dist = strlen(s2);
            return dist;
        }
        else if( NULL == s2 )
        {
            dist = strlen(s1);
            return dist;
        }

        int len1 = strlen(s1);
        int len2 = strlen(s2);

        if( 0 == len1 && 0 == len2 )
        {
            dist = 0;
            return dist;
        }
        else if( 0 == len1 )
        {
            return len2;
        }
        else if( 0 == len2 )
        {
            return len1;
        }

        if( s1[0] == s2[0] )
        {
            dist = editMinDistance( s1 + 1, s2 + 1 );
        }
        else 
        {
            int d1 = 1 + editMinDistance( s1 + 1, s2 + 1 );
            int d2 = 1 + editMinDistance( s1, s2 + 1 );
            int d3 = 1 + editMinDistance( s1 + 1, s2 );

            int max = d1 > d2 ? d2 : d1;
            dist = max > d3 ? d3 : max;
        }

        return dist;
    }

=================================================
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
using namespace std;

int minValue( int v1, int v2, int v3 )
{
    if( v1 <= v2 && v1 <= v3 )
    {
        return v1;
    }

    if( v2 <= v1 && v2 <= v3 )
    {
        return v2;
    }

    if( v3 <= v1 && v3 <= v2 )
    {
        return v3;
    }

}


// 求两个字符串的编辑距离
// 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
// From: 《王道-程序员求职宝典P192》

int calStringDistance( string X, string Y )
{
    int result = 0;

    int len1 = X.length();
    int len2 = Y.length();

    if( 0 == len1 )
    {
        result = len2;
        return result;
    }   

    if( 0 == len2 )
    {
        result = len1;
        return result;
    }

    int **p = new int *[ len1 + 1 ];

    for( int i = 0; i < len1 + 1; ++i )
    {
        p[i] = new int[ len2 + 1 ];
    }

    for( int i = 0; i <= len1; ++i )
    {
        p[i][len2] = len1 - i;
    }

    for( int i = 0; i <= len2; ++i )
    {
        p[len1][i] = len2 - i;
    }

    p[len1][len2] = 0;

    for( int i = len1 - 1; i >= 0; --i )
    {
        for( int j = len2 - 1; j >= 0; --j )
        {
            if( X[i] == Y[j] )
            {
                p[i][j] = p[ i + 1 ][ j + 1 ];
            }
            else
            {
                int v1 = p[ i + 1 ][j];
                int v2 = p[i][ j + 1 ];
                int v3 = p[ i + 1 ][ j + 1 ];
                p[i][j] = minValue( v1, v2, v3 ) + 1;
            }
        }
    }

    result = p[0][0];

    for( int i = 0; i < len1 + 1; ++i )
    {
        delete []p[i];
    }

    delete []p;
    return result;

}


const int SIZE = 100;


int cnt1 = 0;
int dist[SIZE][SIZE];

int calStringDistance1( string X, string Y, int i, int j )
{
    int result = 0;
    int len1 = X.length();
    int len2 = Y.length();

    if( i < 0 || j < 0 || i > len1 || j > len2 )
    {
        cout << "calStringDistance1 func: err -1, i < 0 || j < 0 || i > len1 || j > len2" << endl;
        result = -1;
        return result;      
    }

    if( i == len1 )
    {
        dist[i][j] = len2 - j;
        result = dist[i][j];
        return result; 
    }

    if( j == len2 )
    {
        dist[i][j] = len1 - i;
        result = dist[i][j];
        return result;
    }

    if( dist[i][j] != -1 ) //备忘录解法
    {
        cnt1 = cnt1 + 1;    
        return dist[i][j];
    }

    if( X[i] == Y[j] )
    {
        dist[i][j] = calStringDistance1( X, Y, i + 1, j + 1 );
    }
    else
    {
        int v1 = calStringDistance1( X, Y, i + 1, j ); 
        int v2 = calStringDistance1( X, Y, i, j + 1 ); 
        int v3 = calStringDistance1( X, Y, i + 1, j + 1 ); 
        dist[i][j] = minValue( v1, v2, v3 ) + 1; 

    }

    result = dist[i][j];

    return result;

}


int main()
{
    int ret = 0;
    for( int i = 0; i < SIZE; ++i )
    {
        for( int j = 0; j < SIZE; ++j )
        {
            dist[i][j] = -1;
        }
    }

    //cout << calStringDistance( "ab", "c" ) << endl;
    cout << calStringDistance( "awrtg234sfgtsf2r24sdgddg5sgsagadgb", "csgqsdf4tdgssafsfsafsfsgsddhdfffffffffsfsfwetxgasd" ) << endl; // 39

    cout << calStringDistance1( "awrtg234sfgtsf2r24sdgddg5sgsagadgb", "csgqsdf4tdgssafsfsafsfsgsddhdfffffffffsfsfwetxgasd", 0, 0 ) << endl; // 39
    cout << cnt1 << endl; // 2840
    return ret;
}

/*
39
39
2840

*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值