codeforces 519E 倍增法LCA

树上LCA与路径计数
本文介绍了一种在树形结构中寻找两个节点最近公共祖先(LCA)的方法,并利用该方法解决路径计数问题。通过DFS遍历计算每个节点到根节点的距离及第k个祖先节点,实现高效查询任意两点间距离为偶数时,位于这两点等距路径上的节点数量。

点击打开链接

题意:给一个树,然后每次询问需要统计树上的点到达a和b的最近距离相等,求这样的点的个数

思路:因为是一个树,所以最近距离便是LCA上的边,那么就可以看出来当a和b的距离是奇数时结果为0,当是偶数时,最中间的那个点可以,并且与它相连的不是LCA上的点都是可以的,自己画一个图很好看出来      以前的模版不能快速求出某个点的第几个父亲,而这个可以,以后就用这个,其实记录父节点暴力上去也可以过,慢了好多

#include <vector>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=100010;
vector<int>G[maxn];
int dis[maxn],lca[maxn][20],f[maxn],sum[maxn];
void dfs(int x,int fa){
    dis[x]=dis[fa]+1;f[x]=fa;
    lca[x][0]=fa;
    for(int i=1;i<=19;i++){
        if(lca[x][i-1]==-1) break;
        lca[x][i]=lca[lca[x][i-1]][i-1];
    }
    for(int i=0;i<G[x].size();i++){
        int t=G[x][i];
        if(t==fa) continue;
        dfs(t,x);sum[x]+=sum[t];
    }
}
int findlca(int x,int y){
    if(dis[x]<dis[y]) swap(x,y);
    for(int i=19;i>=0;i--){
        if(lca[x][i]!=-1&&dis[lca[x][i]]>=dis[y]) x=lca[x][i];
    }
    if(x==y) return x;
    for(int i=19;i>=0;i--){
        if(lca[x][i]-lca[y][i]){
            x=lca[x][i];y=lca[y][i];
        }
    }
    return lca[x][0];
}
int findkth(int x,int k){
    for(int i=19;i>=0;i--){
        if((1<<i)<=k){
            x=lca[x][i];
            k-=(1<<i);
        }
    }
    return x;
}
int main(){
    int n,m,a,b;
    while(scanf("%d",&n)!=-1){
        memset(dis,0,sizeof(dis));
        for(int i=0;i<maxn;i++) G[i].clear(),sum[i]=1;
        for(int i=0;i<n-1;i++){
            scanf("%d%d",&a,&b);
            G[a].push_back(b);
            G[b].push_back(a);
        }
        dfs(1,0);
        scanf("%d",&m);
        while(m--){
            scanf("%d%d",&a,&b);
            if(a==b){
                printf("%d\n",n);continue;
            }
            int fa=findlca(a,b);
            int len=dis[a]+dis[b]-2*dis[fa];
            if(len%2==1){printf("0\n");continue;}
            if(dis[a]-dis[fa]==len/2){
                int ff1=findkth(a,len/2-1);
                int ff2=findkth(b,len/2-1);
                printf("%d\n",n-sum[ff1]-sum[ff2]);continue;
            }
            if(dis[a]-dis[fa]>len/2){
                int fff=findkth(a,len/2-1);
                printf("%d\n",sum[f[fff]]-sum[fff]);
            }else{
                int fff=findkth(b,len/2-1);
                printf("%d\n",sum[f[fff]]-sum[fff]);
            }
        }
    }
    return 0;
}

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值