题意:给一个图,其中边权为0的边是需要更改的边,更改后的值为正数,且最短路的长度为L,问其中一种合法的分配方法
思路:对于边权为0的边,先不管然后跑最短路,若最短路的长度小于L,则无解,若长度等于L,则将0边变为inf输出即可,最后一种情况就是依次将0边变为1边,然后跑最短路,若当前的最短路值小于等于L,说明已经有一种情况满足了,其它的没有走过的0边就是inf,之前走过的变为1,当前的那个变为L-dis[t]+1即可
#include <queue>
#include <vector>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3fll;
const int maxn=1010;
struct edge{
int to;
ll cost;
edge(int a,ll b){to=a;cost=b;}
};
typedef pair<ll,int>P;
vector<edge>G[maxn];
ll dis[maxn];
void dijkstra(int s){
priority_queue<P,vector<P>,greater<P> >que;
fill(dis,dis+maxn,INF);
dis[s]=0;que.push(P(0,s));
while(!que.empty()){
P p=que.top();que.pop();
int v=p.second;
if(dis[v]<p.first) continue;
for(unsigned int i=0;i<G[v].size();i++){
edge e=G[v][i];
if(dis[e.to]>dis[v]+e.cost){
dis[e.to]=dis[v]+e.cost;
que.push(P(dis[e.to],e.to));
}
}
}
}
int U[10*maxn],V[10*maxn],vis[10*maxn];
ll C[10*maxn];
int main(){
int n,m,s,t,u,v;
ll L,c;
while(scanf("%d%d%I64d%d%d",&m,&m,&L,&s,&t)!=-1){
for(int i=0;i<maxn;i++) G[i].clear(),vis[i]=0;
int len=0;
for(int i=0;i<m;i++){
scanf("%d%d%I64d",&U[i],&V[i],&C[i]);
if(C[i]==0) continue;
G[U[i]].push_back(edge(V[i],C[i]));
G[V[i]].push_back(edge(U[i],C[i]));
}
dijkstra(s);
if(dis[t]<L) {printf("NO\n");continue;}
if(dis[t]==L){
printf("YES\n");
for(int i=0;i<m;i++){
if(C[i]!=0) printf("%d %d %I64d\n",U[i],V[i],C[i]);
else printf("%d %d 1000000001\n",U[i],V[i]);
}
continue;
}
int pos=-1;
for(int i=0;i<m;i++){
if(C[i]!=0) continue;
if(C[i]==0) G[U[i]].push_back(edge(V[i],1)),G[V[i]].push_back(edge(U[i],1));
dijkstra(s);
if(dis[t]<=L){pos=i;break;}
}
if(pos==-1) {printf("NO\n");continue;}
printf("YES\n");
for(int i=0;i<pos;i++){
if(C[i]==0) printf("%d %d 1\n",U[i],V[i]);
else printf("%d %d %I64d\n",U[i],V[i],C[i]);
}
printf("%d %d %I64d\n",U[pos],V[pos],L-dis[t]+1);
for(int i=pos+1;i<m;i++){
if(C[i]!=0) printf("%d %d %I64d\n",U[i],V[i],C[i]);
else printf("%d %d 1000000001\n",U[i],V[i]);
}
}
return 0;
}