像山像海

作者通过一次海边和登山之旅,感悟到了开阔胸怀的重要性,并决心改变自己过于拘谨的心态,学习山海般的包容与豁达。

  十月一,大家像是约定好了一样,一下都消失了。我却还在坚守阵地,却怎样都不想扛起枪,只想拿着望远镜。

  总是觉得自己太小气,心眼小小的,什么事都要想来想去,然后得出很小气很小气的结论。

  活得太小气,不好。

  最近跑了趟海边,爬了个小山,一下子感觉就好了。

  要像山那样,像海那样。

  洗心革面。

  山很高很高,有着它的景致,一动不动,静静地默默地站在那里。等待着它一直等待的人。承载那么多小小心眼的人们爬到高处,打开胸襟。

   海很广很广,前浪后浪从来都不停地翻滚着,呼啸着涌动着。呼喊着它一直呼喊的名字。岸上的人们翘望着,似乎模模糊糊后面就是他们想看到的景象。

 要像山像海。

### 手眼标定的技术原理 手眼标定的核心在于建立摄像头与机械臂末端执行器之间的几何关系。通过这种方式,可以将摄像头捕捉到的图像信息转化为机器人运动控制所需的坐标数据。具体而言,在 **Eye-in-Hand** 配置下,摄像头被安装在机械臂的末端执行器上[^1]。 #### 数学模型描述 对于机械臂的手眼标定问题,通常涉及四种主要坐标系:基座坐标系(Base Frame)、末端执行器坐标系(End Effector Frame)、摄像机坐标系(Camera Frame),以及标定板坐标系(Calibration Board Frame)。这些坐标系的关系可以通过齐次变换矩阵表示: \[ {}^{B}T_C = {}^{B}T_E \cdot {}^{E}T_C \] 其中: - ${}^{B}T_C$ 表示从基座坐标系到摄像机坐标系的转换; - ${}^{B}T_E$ 是从基座坐标系到末端执行器坐标系的已知变换; - ${}^{E}T_C$ 则是从末端执行器坐标系到摄像机坐标系的未知变换,这也是我们需要求解的目标参数之一[^3]。 ### 实现方法概述 为了完成上述计算过程,实际应用中一般采用如下步骤来实现手眼标定: #### 数据采集阶段 利用固定模式的标定物(例如棋盘格图案)作为参照对象放置于工作区域内不同位置,并记录每次移动前后对应的关节角度变化量以及拍摄所得图片中的特征点位置信息。这样可以获得多组配对的数据集用于后续处理分析[^2]。 #### 参数估计算法 基于所收集的数据集合运用特定优化策略寻找最优解以最小化误差函数为目标函数来进行迭代运算直至收敛得到最终结果即所需的手眼关系矩阵${}^{E}T_C$或者反过来考虑的情况下的另一个形式表达式如果定义为eye-to-hand则会涉及到另外一套类似的流程只是方向有所区别而已。 ```python import numpy as np from scipy.linalg import inv def hand_eye_calibration(T_base_end, T_camera_board): """ Perform Hand-Eye calibration using Tsai-Lenz method. Parameters: T_base_end (list): List of base to end transformations. T_camera_board (list): List of camera to board transformations. Returns: numpy.ndarray: Transformation matrix from end-effector to camera frame. """ n = len(T_base_end) A_list = [] B_list = [] for i in range(n): Ai = inv(np.array(T_base_end[i])) Bi = np.array(T_camera_board[i]) A_list.append(Ai[:3,:3].flatten()) B_list.append(Bi[:3,:3].flatten()) # Solve AX=XB problem via SVD decomposition or other numerical methods... X_estimated = ... # Placeholder for actual implementation details return X_estimated.reshape((4,4)) ``` 以上代码片段展示了一个简化版的手眼标定程序框架,它接受两组输入——分别代表机械臂端部相对于基础参考帧的变化情况列表`T_base_end` 和由相机观察到的标准测试模板相对自身光学中心发生位移后的姿态序列 `T_camera_board` ,然后返回估算出来的两者间关联性表述形式也就是所谓的“X”。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值