TETA指标(定位、关联和分类)

本文提出了一种新的度量标准TETA,用于评估追踪性能的三个方面——定位、关联和分类,尤其在分类不准确时。TETer跟踪器采用CEM进行关联,并在BDD100K和TAO数据集上优于先进方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Tracking Every Thing in the Wild

摘要

       我们引入了一种新的度量标准,称为“Track Every Thing Accuracy”(TETA),将跟踪测量分为三个子因素:定位、关联和分类,即使在分类不准确的情况下也允许全面评估跟踪性能。TETA还解决了大规模跟踪数据集中具有不完整注释的挑战性问题。此外,我们引入了一种名为“Track Every Thing Tracker”(TETer)的跟踪器,它使用“类别范例匹配”(CEM)进行关联。我们的实验证明,TETA可以更全面地评估跟踪器,而TETer在具有挑战性的大规模数据集BDD100K和TAO上相对于最先进的方法取得了显著改进。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值