在Python中,dict
是一种内置的数据类型,代表字典(dictionary)。字典是一种无序的数据结构,用于存储一组键值对(key-value pairs)。每个键(key)都唯一,并且与一个值(value)相关联。这种键值对的映射关系使得字典非常适合用于存储和检索数据,因为你可以使用键来快速访问相应的值。
以下是字典的基本特性和解释:
-
键-值对(key-value pairs):字典由一系列键值对组成,每个键和值之间使用冒号
:
分隔,而不同的键值对之间使用逗号,
分隔。例如:{'name': 'Alice', 'age': 30, 'city': 'New York'}
。 -
键的唯一性:字典中的键必须是唯一的,每个键只能出现一次。如果尝试使用相同的键添加一个新的值,它会覆盖已存在的键对应的值。
-
无序性:字典中的键值对没有固定的顺序,它们不会按照特定的顺序存储或迭代。这意味着你不能依赖字典的顺序来访问元素。
-
可变性:字典是可变的数据类型,可以通过添加、修改或删除键值对来改变字典的内容。
-
用途:字典通常用于存储关联性数据,其中每个键表示一个唯一的标识符,而对应的值表示与该标识符相关联的数据。字典适用于许多不同的应用场景,例如配置文件、数据库查询结果的存储、缓存等。
-
例如 person = { 'name': 'Alice', 'age': 30, 'city': 'New York' } print(person['name']) # 输出: 'Alice' print(person['age']) # 输出: 30
在FasterRCNN的骨干网络设置中dict的用法
backbone=dict( type='ResNet',
# 'type'键,用于指定骨干网络的类型,这里是'ResNet'
depth=50,
#'depth':键,用于指定ResNet的深度,这里是50层。
num_stages=4,
# 'num_stages':键,用于指定骨干网络的阶段数量,这里是4个阶段。
out_indices=(0, 1, 2, 3),
# 'out_indices':键,用于指定输出特征的阶段索引,这里是一个包含0、1、2和3的元组。 frozen_stages=1,
# 'frozen_stages':键,用于指定冻结(不进行训练)的阶段数量,这里是1个阶段。
#dict中嵌套字典的使用
norm_cfg=dict(type='BN', requires_grad=True),
# 这个键值对定义了一个名为norm_cfg的键,它的值是另一个字典。这个字典包含了两个键值对: type='BN': 这个键值对指定了归一化(Normalization)的类型为Batch Normalization('BN')。 requires_grad=True: 这个键值对表示要对归一化的参数进行梯度计算(requires_grad=True)。 norm_eval=True,
# 在评估模式下使用归一化 style='pytorch', # 使用PyTorch风格的网络初始化 init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'))
# 这个键值对定义了一个名为init_cfg的键,它的值是另一个字典。这个字典包含了两个键值对: type='Pretrained': 这个键值对指定了初始化模型的类型为预训练模型('Pretrained')。 checkpoint='torchvision://resnet50': 这个键值对指定了预训练模型的路径,具体是torchvision库中的ResNet-50模型。