(8)连续子数组的最大和

题目描述:输入一个整型数组,元素有正数,也有负数。数组中一个或者多个组成一个子数组,求所有子数组中的最大值为多少?

举例:{1 , -2 , 3 ,10 , -4 ,7 ,2 ,-5} ,那么最大子数组为{3 ,10 , -4 , 7 , 2}。最大值为18;

思路一:穷举法

遍历所有连续子数组,比较找出其中子数组值最大的一个;

MaxSum[i .....j] 为数组data中第i个到第j个的连续和,其中 0 <= i <= j < length;遍历所有可能的MaxSum[i........j];

思路二:

当前子数组之和:CurrentSum;

最大子数组之和:MaxSum;

若CurrentSum <= 0:则 CurrentSum + data[i] <= data[i] ;CurrentSum没有必要再加下去,其需要更新为:data[i];

若CurrentSum > 0; 则 CurrentSum += data[i];

若CurrentSum > MaxSum: 则MaxSum = CurrentSum;

代码实现:

#include<iostream>
using  namespace std;
//---------------------------------------------连续子数组的最大和---------------------------------------
//无效输入
bool InvalidInput = false;

int TheGreatestOfSum_Soulation1(int* data , int length)
{
	if(data == NULL || length <= 0)
	{
		InvalidInput = true;
		return 0;
	}

      bool InvalidInput = false;

	int MaxSum = 0;
	int CurrentSum = 0;

	for(int i = 0; i < length; ++i)
	{
		for(int j = i; j < length; ++j)
		{
			for(int k = i; k <= j; ++k)
			{
				CurrentSum += data[k];
			}

			if(CurrentSum > MaxSum)
				MaxSum = CurrentSum;
			CurrentSum = 0;
		}
	}
	return MaxSum;
}



int TheGreatestOfSum_Soulation2(int* data , int length)
{
	if(data == NULL || length <= 0)
	{
		InvalidInput = true;
		return 0;
	}

      InvalidInput = false;

	//0x80000000:16进制表示-0;
	//为了预防元素皆为负数;
	int MaxSum = 0x80000000;
	int CurrentSum =0;
	for(int i = 0; i < length; ++i)
	{
		if(CurrentSum <= 0)
			CurrentSum = data[i];
		else 
			CurrentSum += data[i];

		if(CurrentSum > MaxSum)
			MaxSum = CurrentSum;
	}

	return MaxSum;
}



int main()
{
	//数组元素:有正 ,有负
      int data1[] = {-2 , -3 , -1 , -5  , -9 , -8 , 10};
	int result1 = TheGreatestOfSum_Soulation1(data1 , 7);
	cout<<result1<<endl;

	int data2[] = {2 , 3 , -1 , -5  , -9 , -8 , 10};
	int result2 = TheGreatestOfSum_Soulation2(data2 , 7);
	cout<<result2<<endl;

	//数组元素:皆负
	int data3[] = {-6 , -3 , -4 , -5 , -9};
	int result3 = TheGreatestOfSum_Soulation2(data3 , 5);
	cout<<result3<<endl;

	//数组元素:皆正
	int data4[] = {2 , 3 , 4 , 1, 6 , 7};
      int result4 = TheGreatestOfSum_Soulation2(data4 , 6);
	cout<<result4<<endl;

	//输入为NULL
	int result5 = TheGreatestOfSum_Soulation2(NULL , 0);
	cout<<result5<<endl;

	return 0;
}



以下是使用分治法求解最大连续数组(字段和)问题的Java代码: ```java public class MaximumSubarray { public static int[] findMaximumSubarray(int[] nums) { return findMaximumSubarray(nums, 0, nums.length - 1); } private static int[] findMaximumCrossingSubarray(int[] nums, int low, int mid, int high) { int leftSum = Integer.MIN_VALUE; int sum = 0; int maxLeft = -1; for (int i = mid; i >= low; i--) { sum += nums[i]; if (sum > leftSum) { leftSum = sum; maxLeft = i; } } int rightSum = Integer.MIN_VALUE; sum = 0; int maxRight = -1; for (int j = mid + 1; j <= high; j++) { sum += nums[j]; if (sum > rightSum) { rightSum = sum; maxRight = j; } } return new int[]{maxLeft, maxRight, leftSum + rightSum}; } private static int[] findMaximumSubarray(int[] nums, int low, int high) { if (low == high) { return new int[]{low, high, nums[low]}; } else { int mid = (low + high) / 2; int[] left = findMaximumSubarray(nums, low, mid); int[] right = findMaximumSubarray(nums, mid + 1, high); int[] cross = findMaximumCrossingSubarray(nums, low, mid, high); if (left[2] >= right[2] && left[2] >= cross[2]) { return left; } else if (right[2] >= left[2] && right[2] >= cross[2]) { return right; } else { return cross; } } } public static void main(String[] args) { int[] nums = {1, -2, 3, 4, -5, 6, 7, -8, 9}; int[] result = findMaximumSubarray(nums); System.out.println("Maximum subarray sum: " + result[2]); System.out.println("Maximum subarray indices: [" + result[0] + ", " + result[1] + "]"); } } ``` 在这个示例中,我们定义了一个 `findMaximumSubarray()` 方法来找到给定数组最大连续数组。我们使用分治法来解决这个问题。我们首先将数组划分为两个数组,然后分别找到左半部分、右半部分和跨越中心的最大数组。最后,我们比较这三个结果,返回具有最大和的数组。 我们还定义了一个 `findMaximumCrossingSubarray()` 方法来找到跨越中心的最大数组。在这个方法中,我们首先找到左半部分的最大数组,然后找到右半部分的最大数组。通过将这两个数组组合起来,我们可以找到跨越中心的最大数组。 在 `main()` 方法中,我们创建了一个示例数组,并使用 `findMaximumSubarray()` 方法来找到最大数组的和和索引。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值