剑指Offer13:剪绳子

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:

2 <= n <= 58
注意:本题与主站 343 题相同:https://leetcode-cn.com/problems/integer-break/

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jian-sheng-zi-lcof
思路1
这明显是一个动态规划的题,求问题的最优解,并且整体最优解是子问题的最优解。用函数来表达:f(n)=max[f(i)*f(n-i)] f(i)和f(n-i)的最优解就是f(n) 的最优解。我们可以从下往上推,避免重复的运算。
解答1

    public int cuttingRope(int n) {
       if (n<2)
           return 0;
       if (n==2)
           return 1;
       if (n==3)
           return 2;
       int max=0;
       int[] dp=new int[n+1];
       dp[0]=0;//dp[0]可以由长度为1的绳子来推 dp[1]*dp[0]
       dp[1]=1;//dp[1]可以由长度为3的绳子来推 dp[1]*dp[2]
       dp[2]=2;//dp[2]可以由长度为4的绳子来推 dp[2]*dp[2]
       dp[3]=3;//dp[3]可以由长度为5的绳子来推 dp[3]*dp[2]
       //f(n)=max[f(i)*f(n-i))]
        //从下往上推
        for (int i = 4; i <=n; i++) {
            //从1 到i/2 寻找最优解  一个个进行试
            for (int j = 1; j <=(i/2) ; j++) {
                int temp=dp[j]*dp[i-j];
                if (max<temp)
                    max=temp;
            }
            dp[i]=max;
        }
        return dp[n];
    }

思路2
这道题我们也可以用贪心算法,不过在用贪心算法能得到最优解的题,需要用表达式来证明贪心是真确的 当n>=5时,3*(n-3)>2*(n-2) ,这个结论正确的充分条件就是 n>=5,只有当n>=5时,才满足,
当n==4时,就是切成2段长度为2的,为4。
解答2

public int cuttingRope(int n){
        if (n<2)
            return 0;
        if (n==2)
            return 1;
        if (n==3)
            return 2;
		if(n==4)
			return 4;
        int timeOf3=n/3;//余数 1||2||0


       //这里我们也可以分开写一下
//        int yushu=n-timeOf3*3;
//        if (yushu==0)
//            return (int)Math.pow(3,timeOf3);
//        if (yushu==1)
//            return (int)Math.pow(3,timeOf3-1)*(2*2);
//        //    余数是2的时候
//         return (int)Math.pow(3,timeOf3)*2;



        //长度大于等于5的时候 我们应该将他剪去3的长度
        //长度剩4时  我们应该把他分成两段长度为2的
        if (n-timeOf3*3==1)//就剩长度为1的绳子了 
            timeOf3-=1;//要减去一个3  让剩下的长度为4
        
        int timeOf2=(n-timeOf3*3)/2;

        return (int) (Math.pow(3,timeOf3)*Math.pow(2,timeOf2));
    }

记录一下···
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值