给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 58
注意:本题与主站 343 题相同:https://leetcode-cn.com/problems/integer-break/
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jian-sheng-zi-lcof
思路1:
这明显是一个动态规划的题,求问题的最优解,并且整体最优解是子问题的最优解。用函数来表达:f(n)=max[f(i)*f(n-i)] f(i)和f(n-i)的最优解就是f(n) 的最优解。我们可以从下往上推,避免重复的运算。
解答1:
public int cuttingRope(int n) {
if (n<2)
return 0;
if (n==2)
return 1;
if (n==3)
return 2;
int max=0;
int[] dp=new int[n+1];
dp[0]=0;//dp[0]可以由长度为1的绳子来推 dp[1]*dp[0]
dp[1]=1;//dp[1]可以由长度为3的绳子来推 dp[1]*dp[2]
dp[2]=2;//dp[2]可以由长度为4的绳子来推 dp[2]*dp[2]
dp[3]=3;//dp[3]可以由长度为5的绳子来推 dp[3]*dp[2]
//f(n)=max[f(i)*f(n-i))]
//从下往上推
for (int i = 4; i <=n; i++) {
//从1 到i/2 寻找最优解 一个个进行试
for (int j = 1; j <=(i/2) ; j++) {
int temp=dp[j]*dp[i-j];
if (max<temp)
max=temp;
}
dp[i]=max;
}
return dp[n];
}
思路2:
这道题我们也可以用贪心算法,不过在用贪心算法能得到最优解的题,需要用表达式来证明贪心是真确的 当n>=5时,3*(n-3)>2*(n-2) ,这个结论正确的充分条件就是 n>=5,只有当n>=5时,才满足,
当n==4时,就是切成2段长度为2的,为4。
解答2:
public int cuttingRope(int n){
if (n<2)
return 0;
if (n==2)
return 1;
if (n==3)
return 2;
if(n==4)
return 4;
int timeOf3=n/3;//余数 1||2||0
//这里我们也可以分开写一下
// int yushu=n-timeOf3*3;
// if (yushu==0)
// return (int)Math.pow(3,timeOf3);
// if (yushu==1)
// return (int)Math.pow(3,timeOf3-1)*(2*2);
// // 余数是2的时候
// return (int)Math.pow(3,timeOf3)*2;
//长度大于等于5的时候 我们应该将他剪去3的长度
//长度剩4时 我们应该把他分成两段长度为2的
if (n-timeOf3*3==1)//就剩长度为1的绳子了
timeOf3-=1;//要减去一个3 让剩下的长度为4
int timeOf2=(n-timeOf3*3)/2;
return (int) (Math.pow(3,timeOf3)*Math.pow(2,timeOf2));
}
记录一下···