AI测试之 TestGPT

如今最火热的技术莫非OpenAI的ChatGPT莫属,AI技术也在很多方面得到广泛应用。今天我们要介绍的TestGPT就是一个软件测试领域中当红的应用。

TestGPT是什么?

TestGPT是一家总部位于以色列特拉维夫的初创公司 CodiumAI Ltd.,发布的一款用于测试领域的人工智能模型(AI model),由 OpenAI 的 GPT-4 大型语言模型驱动。

官网地址: www.codium.ai

从官网的介绍可以看出,它是一个旨在协助开发人员测试他们的代码,为开发人员提供自动生成的软件测试套件建议,从而加快编码和错误扫描的AI工具。

image

如何使用?

目前TestGPT提供了针对VsCode和JetBrains的插件支持 

image

以VsCode为例,在vsCode的插件中心搜索CodiumAI即可安装

image

安装后可以Github账户直接登录连接。

下面我们来用一段有问题的python排序算法代码来看看它是如何使用的。

def insert_sort(lists):
    # 插入排序
    count = len(lists)
    for i in range(0, count): #range区间有误,这里是bug,应为(1, count)
        key = lists[i]
        j = i - 1
        while j >= 0:
            if lists[j] > key:
                lists[j + 1] = lists[j]
                lists[j] = key
            j -= 1
    return lists

切换到CodiumAI插件,连接后可以看到代码部分已经有了生成测试的入口

image

尝试生成下看看效果,稍等片刻,就可以看到AI的成果了

image

AI的辅助界面有三部分,分别是:

  • Test Suite 测试用例
  • Code Analysis 代码分析
  • Code Suggestions 代码修改建议

在用例配置部分可以做测试的基本配置

image

Coverage部分则可以看到AI生成的Case覆盖情况

image

Test部分则是具体的测试用例,本例中生成了6条用例

image

执行后可以看到用例的执行结果,但生成的测试代码都执行成功了,似乎没有通过测试代码测试出bug :(

image

Code Analysis则给出了代码的分析说明,可以

image

代码建议部分则给出了修改建议,这里倒是准确地指出了代码中的问题。

image

按照建议直接应用,可以看到代码已经修改并加了注释

image

总结

所以可以看到TestGPT还是非常优秀的,准确地分析出了代码的作用并发现了代码中有问题的地方。也帮助设计了测试用例覆盖及相关单元测试脚本。 善用这个工具已经无疑可以给开发工程师提供非常大的辅助,但是从初步的使用来看,自行生成的测试用例对于问题代码的覆盖还有不足,短期内应该还不足以完全代替测试设计。

<think>好的,用户需要寻找关于利用AI提升测试效率的文档或资料。首先,我需要检查现有的引用内容,看看是否有相关的资料可以推荐。根据提供的引用,引用[1]提到使用AIGC自动生成API文档和代码注释,这可能与测试效率相关,因为好的文档能帮助测试人员更快理解代码逻辑。引用[4]则提到使用AppleScript来提升测试开发效率,虽然不直接涉及AI,但可能用户对自动化工具也感兴趣。 接下来,用户的问题明确提到“AI 提升 测试 效率”,所以需要优先推荐涉及AI测试中的应用的资料。引用[2]讨论了使用AI进行自动呼吸困难检测,虽然属于计算机视觉应用,但可能展示了AI在自动化测试中的潜力。引用[3]解释AI代理,可能与自动化测试中的智能代理相关。 不过,现有的引用中没有直接关于AI测试效率方面的文档,可能需要结合引用[1]和引用[4],说明AI生成文档如何间接提升测试效率,以及自动化工具与AI结合的可能性。此外,可以建议用户查阅更多关于AI测试自动化、测试用例生成、缺陷预测等方面的资料,例如基于AI测试用例生成工具或智能测试框架。 需要确保回答结构清晰,分点列出相关文档和资料,并自然融入引用内容。同时,生成的问题需要引导用户深入探讨AI测试中的具体应用和技术细节。</think>以下是与“利用AI提升测试效率”相关的文档及资料方向整理,结合了站内引用内容: ### 一、核心资料推荐 1. **AI自动化测试框架** - 基于计算机视觉的测试自动化(引用[2]中提到的呼吸困难检测技术可延伸),如使用AI识别UI元素并自动生成测试脚本 - 智能测试用例生成系统:$$ TestCase_{auto} = f(Requirement, HistoricalData) $$ - 应用场景:Web/App界面自动化测试、API测试数据生成 2. **AI生成测试文档** - 使用AIGC自动生成测试报告与用例文档(扩展引用[1]的应用场景) - 示例流程: ```python def generate_test_doc(code): # 调用AI模型解析代码逻辑 ai_analysis = Codex.analyze(code) return f"测试场景:{ai_analysis.scenario}\n测试步骤:{ai_analysis.steps}" ``` 3. **缺陷预测与智能分析** - 基于机器学习的代码缺陷预测模型:$ P(defect) = \sigma(W \cdot X + b) $ - 测试日志智能分析系统(结合引用[4]的自动化提醒功能) ### 二、延伸技术方向 1. **AI代理在测试中的应用**(引用[3]概念延伸) - 自主执行测试任务的智能体架构: $$ Agent_{tester} = \langle Perception, Decision, Action \rangle $$ 2. **测试覆盖率优化** - 使用强化学习动态调整测试路径:$ Path_{optimal} = \arg\max(Reward_{coverage}) $ ### 三、实践资源建议 1. **工具链组合方案**: - AI文档生成工具 + 自动化测试平台 + 缺陷预测模型 2. **开源项目参考**: - TestGPT(基于GPT的测试生成框架) - DeepTest(深度学习驱动的测试系统)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城下秋草

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值