tensorflow中文社区学习

视频笔记:https://www.bilibili.com/watchlater/#/av50844584/p14在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

第一章: 利用神经网络识别手写数字

人工神经网络的两大类别(感知器和sigmoid神经元)以及神经网络标准学习算法,即随机梯度下降。

在这里插入图片描述

阈值越低,表明你越想去参加这个节日活动。

当我们定义感知器时,它们都只有一个输出。但上面的网络中,这些感知器看上去有多个输出。实际上,它们也仍然只有一个输出,只不过为了更好的表明这些感知器输出被其他感知器所使用,因此采用了多个输出的箭头线表示,这比起绘制一条输出线然后分裂开更好一些。在这里插入图片描述

sigmod神经元
σ有时叫做逻辑函数,并且这种新的神经元叫做逻辑神经元。
在这里插入图片描述在这里插入图片描述在这里插入图片描述
中间层被称为隐含层,因为里面的神经元既不是输入也不是输出。“隐含”这个术语实际上它只表示“不是输入和输出”而已。
由于一些历史原因,这样的多层网络有时被叫做多层感知器或者MLPs尽管它是由sigmoid神经元构成的,而不是感知器。
在这里插入图片描述
某一层的输出当作下一层的输入的神经网络。这样的网络被称为前向反馈神经网络。这意味着在网络中没有循环——信息总是向前反馈,决不向后。

递归神经网络比起前馈网络更加接近于我们人脑的工作方式。模型思想是让神经元在不活跃之前激励一段有限的时间。这种激励能刺激其它神经元,使其也能之后激励一小会。这就导致了更多神经元产生激励,等过了一段时间,我们将得到神经元的级联反应。在这样的模型中循环也不会有太大问题,因为一个神经元的输出过一会才影响它的输入,而不是瞬间马上影响到。

将识别手写数字分成两个子问题。首先,我们想办法将一个包含很多数字的图像分成一系列独立的图像,每张包含唯一的数字。
然后,一旦这幅图像被分离,程序需要将各个数字进行分类
为了识别这些数字,我们将采用三层神经网络在这里插入图片描述在这里插入图片描述
为什么用10个输出神经元。别忘了,网络的目标是识别出输入图像对应的数字(0,1,2,…,9)。一种看起来更自然的方法是只用4个输出神经元,每个神经元都当做一个二进制值,取值方式取决于神经元输出接近0,还是1。

代价函数有时被称为损失或目标函数。
在这里插入图片描述
为什么引入二次型代价函数?毕竟,我们不是主要关注在网络对多少图像进行了正确分类?为什么不直接最大化这个数值,而不是最小化一个像二次型代价函数一样的间接测量值?问题就在于正确识别的图像数量不是权重和偏移的平滑的函数。对于大多数,权重和偏移的很小改变不会让正确识别的图像数量值有任何改变。这就使得很难指出如何改变权重和偏移来提高性能。如果我们使用一个像二次型平滑代价函数,它将很容易指出如何细微的改变权重和偏移来改进代价函数。这就是为什么我们首先关注在最小化二次型代价函数,而且只有那样我们才能检测分类的准确性。
我们训练神经网络的目标是找出
能最小化二次型代价函数C(w,b)的权重和偏移。

在这里插入图片描述在这里插入图片描述

在这里插入图片描述
注意:采用这一规则,梯度下降算法并没有模拟真实的物理运动。在现实世界,小球具有动量,而动量可能让小球偏离最陡的下降走向,甚至可以让其暂时向着山顶的方向逆向运动。这里,我们选择Δv的规则却是说“立马给我往下滚”,而这个规则仍然是寻找最小值的一个好方法!在这里插入图片描述
学习率小,迭代次数大。 将NaN或空值替换为其他值,不影响模型学习。
因此梯度下降可以被认为是一种沿着 C 局域下降最快的方向一步一步向前走,从而找到最小值的方法。

一个可用于加速学习过程的办法被称作 “随机梯度下降”(stochastic gradient descent)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值