CNN Reranking Question-Answer Pairs 句子矩阵宽卷积和窄卷积方法

这篇博客介绍了如何使用CNN(卷积神经网络)来计算问答对的相关性,对比了Severyn A和Moschitti A的论文中宽卷积与Yin等人在ABCNN模型中窄卷积的方法。尽管两种模型在细节上有所不同,但本质上都是通过卷积和池化操作获取特征,然后进行二分类。ABCNN利用宽卷积得到S+W-1维的向量,而另一种方法则使用窄卷积得到S-W+1维的向量。相似性计算方面,ABCNN采用余弦相似度,而Severyn A的方法则通过矩阵操作。此外,博主分享了一个GitHub链接,提供了用TensorFlow实现ABCNN的代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这两天在看用CNN计算问答对相关性的论文。看到两篇论文,分别用宽卷积和窄卷积对句子进行卷积,记录一下。一篇是Severyn A, Moschitti A. Modeling Relational Information in Question-Answer Pairs with Convolutional Neural Networks[J]. 2016(论文稍微有点老),通过对问答对的句子embedding矩阵分别进行卷积,池化,得到feature然后进行二分类。示意图如下:

另一篇论文是:Yin W, Schütze H, Xiang B, et al. ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs[J]. Computer Science, 2015(这个更老一点), 模型基本框架如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值