基础知识:
(1)矩阵乘法
简单的说矩阵就是二维数组,数存在里面,矩阵乘法的规则:A*B=C
其中c[i][j]为A的第i行与B的第j列对应乘积的和,即:
(2)矩阵快速幂模板
就是算A^n,就是把快速幂算法中的乘法改成矩阵的乘法就可以了
代码:
#include<iostream>
#include<cstring>
using namespace std;
const int N=5;
struct mat{
int m[N][N];
}init;
void Init()
{
init.m[0][0]=1;
init.m[0][1]=2;
init.m[1][0]=2;
init.m[1][1]=1;
}
mat Mul(mat a,mat b,int n)
{
mat c;
memset(c.m,0,sizeof(c.m));
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
for(int k=0;k<n;k++)
c.m[i][j]+=a.m[i][k]*b.m[k][j];
return c;
}
mat quickpow(mat a,int n)
{
mat res;
int k=n;
memset(res.m,0,sizeof(res.m));
for(int i=0;i<n;i++) res.m[i][i]=1;
while(k)
{
if(k&1) res=Mul(a,res,n);
a=Mul(a,a,n);
k>>=1;
}
return res;
}
int main()
{
int n;
cin>>n;
Init();
mat t=quickpow(init,2);
cout<<t.m[0][0]<<" "<<t.m[0][1]<<endl;
cout<<t.m[1][0]<<" "<<t.m[1][1]<<endl;
return 0;
}
例一:http://poj.org/problem?id=3070
题目:斐波那契数列f(n),给一个n,求f(n)%10000,n<=1e9;
(这题是可以用fibo的循环节去做的,不过这里不讲,反正是水题)
矩阵快速幂是用来求解递推式的,所以第一步先要列出递推式:
f(n)=f(n-1)+f(n-2)
第二步是建立矩阵递推式,找到转移矩阵:
,简写成T * A(n-1)=A(n),T矩阵就是那个2*2的常数矩阵,而
这里就是个矩阵乘法等式左边:1*f(n-1)+1*f(n-2)=f(n);1*f(n-1)+0*f(n-2)=f(n-1);
这里还是说一下构建矩阵递推的大致套路,一般An与A(n-1)都是按照原始递推式来构建的,当然可以先猜一个An,主要是利用矩阵乘法凑出矩阵T,第一行一般就是递推式,后面的行就是不需要的项就让与其的相乘系数为0。矩阵T就叫做转移矩阵(一定要是常数矩阵),它能把A(n-1)转移到A(n);然后这就是个等比数列,直接写出通项:此处A1叫初始矩阵。所以用一下矩阵快速幂然后乘上初始矩阵就能得到An,这里An就两个元素(两个位置),根据自己设置的A(n)对应位置就是对应的值,按照上面矩阵快速幂写法,res[1][1]=f(n)就是我们要求的。
给一些简单的递推式
1.f(n)=a*f(n-1)+b*f(n-2)+c;(a,b,c是常数)
2.f(n)=c^n-f(n-1) ;(c是常数)