SGAN阅读笔记
引言:利用GAN生成适合进行隐写的图片,SGAN由生成器G,判别器D,S。G是生成用于隐写的图片,其输入为随机噪声。判别器D是用来判别图像真假,其输入为真是的图片和生成的图片。判别器S用于判断图片是否含有隐藏数据。通过对抗训练,可以使G产生逼真且适合用于隐写的图片。
原理:根据Good fellow提出的GAN,对其进行修改。
其损失函数为:
SGAN的模型为:
采用随机小批次梯度下降对参数进行更新:
D的参数更新为:
S的参数更新为:
G的参数更新为:
模型介绍:
判别器D和S结构相似:
4个C2D-BN-LR(Conv2d to Batch normalization to leaky relu),一个全连接层(一个神经元),一个sigmoid函数。
生成器结构如下:
一个全连接层(8192个神经元),和4个C2D-BN-LR,和一个tahn激活函数。
学习率为0.0001,每更一次D和S,更新两次G。
同时定义了一个独立的隐写分析器,其结构为:
图像->用F进行滤波->conv2d->conv2d->Max Pooling ->conv2d->conv2d->Max Pooling ->全连接层(1024个神经元)->全连接层(1个神经元)
在S*的输入图片进行滤波,滤波器F为: