SGAN阅读笔记

SGAN阅读笔记

引言:利用GAN生成适合进行隐写的图片,SGAN由生成器G,判别器D,S。G是生成用于隐写的图片,其输入为随机噪声。判别器D是用来判别图像真假,其输入为真是的图片和生成的图片。判别器S用于判断图片是否含有隐藏数据。通过对抗训练,可以使G产生逼真且适合用于隐写的图片。

原理:根据Good fellow提出的GAN,对其进行修改。
其损失函数为:
SGAN的损失函数SGAN的模型为:
SGAN的模型采用随机小批次梯度下降对参数进行更新:
D的参数更新为:
在这里插入图片描述S的参数更新为:
在这里插入图片描述
G的参数更新为:
在这里插入图片描述模型介绍:
判别器D和S结构相似:
4个C2D-BN-LR(Conv2d to Batch normalization to leaky relu),一个全连接层(一个神经元),一个sigmoid函数。
生成器结构如下:
一个全连接层(8192个神经元),和4个C2D-BN-LR,和一个tahn激活函数。
学习率为0.0001,每更一次D和S,更新两次G。
同时定义了一个独立的隐写分析器,其结构为:
图像->用F进行滤波->conv2d->conv2d->Max Pooling ->conv2d->conv2d->Max Pooling ->全连接层(1024个神经元)->全连接层(1个神经元)

在S*的输入图片进行滤波,滤波器F为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

storm岚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值