- 博客(20)
- 收藏
- 关注
原创 3分钟搞定数据可视化:Mermaid饼图终极指南
* Mermaid饼图能在Markdown中直接创建专业图表,无需切换工具!* 最重要的是这种图表是**声明式**图表,因此可以使用提示词让各种**大模型输出**相关图表。
2025-06-12 23:57:25
808
原创 5分钟玩转Swagger UI:Docker部署+静态化实战
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。Swagger UI作为API文档可视化利器,能自动生成交互式文档,大幅提升开发效率。
2025-06-12 23:47:33
796
原创 再说一说LangChain Runnable接口
LangChain的Runnable接口通过标准化设计:1. 统一各类AI组件的调用范式2. 提供同步/异步、单次/批量、流式/非流式等完整调用模式3. 支持通过LCEL实现声明式组件组合这种设计使开发者能像拼装积木一样构建AI应用,大幅提升开发效率。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!
2025-06-11 23:47:51
1019
原创 Docker实战:5分钟搞定MySQL容器化部署与最佳实践
本文来自「大千AI助手」技术实战系列,专注用真话讲技术,拒绝过度包装。在实际开发中,MySQL容器化部署能极大提高环境一致性和部署效率。本文将带你快速掌握Docker部署MySQL的核心技巧和最佳实践。
2025-06-10 23:54:28
263
原创 Ollama完全指南:从零开始玩转本地大模型部署
Ollama完全指南:从零开始玩转本地大模型部署Ollama作为当下最热门的本地大模型运行框架,让开发者能够轻松在个人电脑上部署和运行各类开源大语言模型。
2025-06-09 23:57:29
515
原创 django中如何解析content-type=application/json的请求
摘要:Django原生视图中,当处理content-type=application/json的POST请求时,request.POST会返回空字典。分析源码发现,Django仅解析multipart/form-data和application/x-www-form-urlencoded两种content-type的请求体。解决方案是手动解析request.body中的JSON数据。文章通过该案例展示了从现象分析、源码追踪到解决问题的完整思路,强调遇到问题时应主动探究底层原理而非依赖框架自动处理。
2025-06-09 18:41:14
536
原创 实测DeepSeek分词机制:你的输入如何变成计费Token?
token 是DeepSeek模型处理文本的基本单位,也是API计费的核心依据。虽然可理解为“字词”,但实际分词规则比表面更复杂,通常 1 个中文词语、1 个英文单词、1 个数字或 1 个符号计为 1 个 token。
2025-06-08 19:30:43
398
原创 英语分词进化论:BPE相关论文汇总
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!
2025-06-08 18:43:38
711
原创 硬核实战 | 3分钟Docker部署ClickHouse列存数据库
本文介绍使用Docker部署ClickHouse OLAP数据库的实战方法,包含关键配置解析和安全建议。通过Docker命令快速部署最新版ClickHouse(23.8),并详细说明端口配置(8123、9000、9004)及安全设置,强调生产环境必须修改默认的开放IP访问权限。文章还演示了客户端连接、用户创建和权限设置的基本操作,以及通过curl验证服务的方法,最后提供官方镜像参考链接。重点提醒高并发场景下的文件句柄限制解决方案和各类端口的安全风险控制措施。
2025-06-07 20:14:33
440
原创 技术深解 | DeepSeek-R1-0528训练参数全透视:163K上下文与MoE高效架构的基石
DeepSeek-R1-0528的卓越能力(如163K超长上下文、高效MoE架构)并非凭空而来,其核心秘密就深藏在训练配置参数中。理解这些参数,就是理解模型设计者的思路与工程取舍。本文带你逐项解析关键配置,揭示强大性能背后的技术细节。
2025-06-07 19:23:40
1067
原创 DeepSeek最新升级实测:推理能力翻倍,但离世界顶尖还有多远?
关注AI的最近对5月28号的DeepSeek更新应该都有所耳闻,但真的像各种自媒体鼓吹的那样惊天地泣鬼神了吗?
2025-06-06 23:35:19
388
原创 血泪教训!Redis默认配置竟会导致数据丢失?Docker生产部署指南
Redis作为内存键值数据库,以微秒级响应成为缓存首选。但内存易失性是其本质缺陷!本文通过Docker实战,揭示生产环境关键配置。
2025-06-06 00:00:00
154
原创 Function Call:大模型如何突破自身局限“使用工具“
Function Call为LLM提供了扩展能力的关键机制。它通过结构化JSON输出让模型能够调用外部工具,解决了LLM的三个核心局限:知识固化、能力边界和计算限制。典型应用包括实时数据查询、业务系统集成和复杂任务分解。技术实现需遵循函数命名规范(64字符以内)、详细参数说明(强类型优先)和系统指令优化等最佳实践。开发者需处理实际API调用并将结果返回模型,形成"查询-调用-整合"的完整交互流程。该技术使LLM从封闭系统升级为可动态扩展的智能中枢,但需注意参数验证和温度设置等关键细节。
2025-06-05 23:57:45
853
原创 DeepSeek动手实践:创建一个自动连点器
本文介绍了使用DeepSeek开源大模型辅助开发Python连点器的完整流程。首先通过提示词让DeepSeek生成基于tkinter和autopy的GUI连点器代码,具备设置点击间隔、次数、随机变化等功能。然后指导如何用PyInstaller将程序打包为Windows可执行文件,包括配置build.spec文件、安装依赖项、添加图标等步骤。最终生成可独立运行的AutoClicker.exe,无需Python环境即可使用。整个过程展示了DeepSeek在代码生成和项目打包方面的实用能力,同时强调该工具仅限合法
2025-06-04 23:59:15
464
原创 告别无效提示!使用少样本学习让AI秒懂你的需求
FewShotPromptTemplate是LangChain中的少样本学习提示工具,通过示例演示而非文字描述指导模型完成任务。其核心流程包括获取示例、格式化示例、组装提示模板并进行变量替换。适用于复杂任务模式、提高回答质量和动态示例选择等场景。研究表明,相比零样本提示,少样本学习在知识检索、文本分类等任务中可提升21-46%的准确率。该模板特别适合需要明确输入输出模式的任务,如翻译、问答等,通过示例引导显著提升模型表现。使用时可选择固定示例或动态示例选择器,具体取决于任务需求。
2025-06-03 23:46:56
535
原创 解密PromptTemplate:为什么说它是AI时代的Jinja模板?
PromptTemplate是用于生成AI提示词的模板工具,它将固定结构和可变内容分离,通过占位符实现动态填充。
2025-06-02 21:47:23
830
原创 LangChain Core架构解析:模块化设计与LCEL原语实现原理
LangChain Core定义了LangChain生态中最核心的最基础的抽象和LCEL原语(LangChain表达式语言)。
2025-06-01 21:02:36
1037
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人