本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!
两者在底层原理(都支持同步/异步、都基于强类型模型、都对 IDE 友好)上是非常相似的。
但在调用风格(语法糖)和代码组织结构上,OpenAI 的官方 SDK(v1.0+ 版本,由 Stainless 引擎生成)属于“豪华精装修版”,而 openapi-python-client 生成的代码属于“实用毛坯版”或“标准工业版”。
以下是详细的对比分析:
1. 代码风格对比(最直观的区别)
这是写代码时感受最深的地方。
OpenAI SDK (v1+) 的风格
OpenAI 采用的是 “资源导向” 的链式调用,非常优雅,符合直觉。
# OpenAI 风格
from openai import OpenAI
client = OpenAI(api_key="...")
# 结构:client.资源.动作(参数...)
# 特点:参数扁平化,不需要手动构建 RequestBody 对象
completion = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}]
)
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!
往期文章推荐:
- 20.告别 Java 风格代码:使用 openapi-python-client 生成原生 Pythonic 的企业级 SDK
- 19.DeepSeek-Coder:开源代码大模型的架构演进与技术突破
- 18.MBPP:评估大语言模型代码生成能力的基准数据集
- 17.RepoCoder:基于迭代检索与生成的仓库级代码补全框架
- 16.Py150数据集:Python代码建模与分析的基准资源
- 15.GPT-Neo:开源大型自回归语言模型的实现与影响
- 14.编辑相似度(Edit Similarity):原理、演进与多模态扩展
- 13.CodeSearchNet:一个大规模代码-文档检索数据集的构建、应用与挑战
- 12.Text-Embedding-Ada-002:技术原理、性能评估与应用实践综述
- 11.RepoEval:定义仓库级代码补全评估的新基准
- 10.NaturalQuestions:重塑开放域问答研究的真实世界基准
- 9.SkCoder:基于草图的代码生成方法
- 8.长尾分布:现实世界数据的本质挑战与机器学习应对之道
- 7.概率校准:让机器学习模型的预测概率值得信赖
- 6.牛顿法:从最优化到机器学习的二阶收敛之路
- 5.交叉验证:评估模型泛化能力的核心方法
- 4.Softmax回归:原理、实现与多分类问题的基石
- 3.多重共线性:机器学习中的诊断与应对策略
- 2.惰性学习:延迟决策的机器学习范式
- 1.模糊集合理论:从Zadeh奠基到现代智能系统融合
openapi-python-client 生成的 SDK 风格
这个工具生成的代码通常是 “函数导向” 的。你需要导入具体的 API 函数,把 client 当作参数传进去。
# openapi-python-client 风格
from daqianai import Client
from daqianai.api.llms import create_llm # 需要导入具体函数
from daqianai.models import CreateRequest # 需要导入具体模型
client = Client(base_url="...")
# 结构:函数.sync(client=client, body=模型对象)
# 特点:需要显式构建 Body 对象 (CreateRequest),层级较深
response = create_approval_instance.sync(
client=client,
body=CreateRequest( # 必须先实例化请求体模型
title="OpenAI模型GPT-5.2",
type="openai",
name="gpt-5.2",
creator="daqianai",
)
)
差异点总结:
- OpenAI:帮你在内部把参数(如
model,messages)自动组装成了 JSON Body,调用时感觉像在使用普通的 Python 函数。 - 生成版:比较“老实”,OpenAPI 文档里定义了 Body 是个 Object,你就必须在 Python 里创建一个 Object 传给它。
2. 相似之处(优点)
尽管调用方式不同,但它们的核心优势是一样的:
-
强类型提示 (Type Hints):
- 两者在 VS Code / PyCharm 中都有极好的代码补全。
- 你把鼠标悬停在
response对象上,都能看到具体的字段(如id,status),而不是一个黑盒的dict。
-
同时支持同步和异步 (Sync & Async):
- OpenAI:
OpenAI()vsAsyncOpenAI()。 - 生成版: 提供
client和async_client,API 函数提供.sync()和.asyncio()两种方法。
- OpenAI:
-
数据模型 (Pydantic / Attrs):
- 两者都将 API 返回的 JSON 自动解析为 Python 对象(Class),你可以用
item.id而不是item['id']来访问数据。
- 两者都将 API 返回的 JSON 自动解析为 Python 对象(Class),你可以用
3. 为什么会有差异?
- OpenAI Python SDK:使用的是一个名为 Stainless 的商业闭源生成器。这个生成器专门为了优化开发者体验(DX)做了大量“魔法”处理,比如自动平铺参数、自动重试机制、自动分页处理等。它是目前 API SDK 界的“天花板”。
- openapi-python-client:是一个开源的通用生成器。它的目标是“准确无误地还原 OpenAPI 规范”。它不会自作主张地改变参数结构,因此虽然稍显繁琐,但非常严谨。
4. 如何让生成的 SDK 更像 OpenAI?
如果你非常喜欢 OpenAI 的那种 client.resource.action() 的写法,而觉得 openapi-python-client 这种 api_function.sync(client) 的写法太啰嗦,你有两个选择:
方案 A:自己再封装一层(推荐)
企业内部使用时,通常会写一个 Wrapper 类。
# 自己封装一个类似 OpenAI 的入口类
class DaqianAI:
def __init__(self, token):
self._client = Client(base_url="...", headers={...})
# 挂载子模块
self.llm = LLMResource(self._client)
self.agent = AgentResource(self._client)
class LLMResource:
def __init__(self, client):
self._client = client
def create(self, title, type, ...):
# 在这里把扁平参数转为 Body 对象
body = CreateRequest(title=title, type=type, ...)
from daqianai.api.llms import create_llm
return create_llm.sync(client=self._client, body=body)
# 使用时就和 OpenAI 一样了
app = DaqianAI(token="...")
app.llm.create(title="OpenAI模型GPT-5.2", type="openai", name="gpt-5.2", creator="daqianai")
方案 B:使用其他生成器
有一些其他的 Python 生成器试图模仿 OpenAI 的风格(Stainless 风格):
- Fern: (fern-api) 这是一个比较新的商业化工具(有免费版),它生成的 SDK 风格非常接近 OpenAI,支持
client.instance.create()这种写法,体验比openapi-python-client更好,但配置稍微复杂一点。
结论
openapi-python-client 生成的 SDK 是“工业级”的,OpenAI 的 SDK 是“消费级”的。
- 如果你追求快速落地、稳定、完全符合文档定义,
openapi-python-client是目前 Python 社区最好的开源选择。 - 虽然它写起来比 OpenAI 稍微繁琐一点(需要多 import 几个类),但对于企业内部对接来说,类型安全和可维护性才是第一位的,这方面它完全达标。
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!

1089

被折叠的 条评论
为什么被折叠?



