解法一:暴力解法,每次窗口滑动,遍历窗口内的最大值是什么,记录下来,时间复杂度O(k*n)
解法二:使用双端队列
具体思路是:每次窗口移动,将进入窗口的值放入一个双端队列末尾,放入之前把双端队列中小于改值的元素移出,因为这个新放入的值一定是在这些值中最晚移出的,所以比他小的值存放在队列中已经没有意义了。然后判断移出的值是否是队列第一个元素,如果是,需要移出队列第一个元素。具体代码如下:
public int[] maxSlidingWindow(int[] nums, int k) {
Deque<Integer> max = new ArrayDeque<>();
int n = nums.length;
if (n == 0) {
return nums;
}
int result[] = new int[n - k + 1];
int index = 0;
for (int i = 0; i < n; i++) {
//开始移动窗口了
if (i >= k) {
//移出的元素刚好是之前窗口的最大值,需要移出队列
if (max.peekFirst() == nums[i - k]) {
max.removeFirst();
}
}
//进入窗口的元素,进入队列的时候要把比自己小的元素从队列中移除,然后再进入
while (!max.isEmpty() && nums[i] > max.peekLast()) {
max.removeLast();
}
max.addLast(nums[i]);
//到了第一个窗口,可以记录最大值了,后续每遍历一次需要记录一次
if (i >= k - 1) {
result[index++] = max.peekFirst();
}
}
return result;
}