1.
案例背景
某在线教育平台希望通过分析课程销售数据,了解不同课程的销售情况、用户购买行为以及影响销售的因素,从而优化课程推广策略、调整课程定价等,以提高平台的销售业绩和用户满意度。
代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 数据读取
data = pd.read_csv('online_education_sales.csv')
# 数据探索性分析
print('数据基本信息:')
data.info()
# 查看数据集行数和列数
rows, columns = data.shape
if rows < 1000:
# 小数据集(行数少于 1000)查看全量数据信息
print('数据全部内容信息:')
print(data.to_csv(sep='\t', na_rep='nan'))
else:
# 大数据集查看数据前几行信息
print('数据前几行内容信息:')
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 数据清洗
# 处理缺失值
data['Age'] = data['Age'].fillna(data['Age'].median())
data = data.dropna(subset=['Course_Type'])
# 处理分类变量
data['Gender'] = data['Gender'].map({'Male': 0, 'Female': 1})
course_type_dummies = pd.get_dummies(data['Course_Type'], prefix='Course')
data = pd.concat([data, course_type_dummies], axis=1)
data = data.drop('Course_Type', axis=1)
# 特征选择
features = ['Age', 'Gender', 'Course_Math', 'Course_Sc