完整的 Python 数据分析案例:社交媒体用户流失预测

1.

案例背景

社交媒体平台的用户流失是一个常见且关键的问题。准确预测哪些用户可能流失,有助于平台提前采取针对性的挽留措施,如个性化推荐、专属优惠活动等,从而提高用户留存率,保障平台的商业价值和持续发展。

代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix

# 数据读取
data = pd.read_csv('social_media_users.csv')

# 数据探索性分析
print('数据基本信息:')
data.info()

# 查看数据集行数和列数
rows, columns = data.shape

if rows < 1000:
    # 小数据集(行数少于 1000)查看全量数据信息
    print('数据全部内容信息:')
    print(data.to_csv(sep='\t', na_rep='nan'))
else:
    # 大数据集查看数据前几行信息
    print('数据前几行内容信息:')
    print(data.head().to_csv(sep='\t', na_rep='nan'))

# 数据清洗
# 处理缺失值
data['age'] = data['age'].fillna(data['age'].median())
data['daily_active_time'] = data['daily_active_time'].fillna(data['daily_active_time'].mean())
data = data.dropna(subset=['is_churn'])

# 特征工程
# 计算用户的互动频率(点赞数 + 评论数 + 分享数)
data['interaction_frequency'] = data['likes_count'] + data['comments_count'] + data['shares_count']

# 对用户注册渠道进行独热编码
registration_channel_dummies = pd.get_dummies(data['registration_channel'], prefix='channel')
data = pd.concat([data, registration_channel_dummies], axis=1)

# 特征选择
features = ['age', 'daily_active_time', 'interaction_frequency', 'friends_count'] + list(registration_channel_dummies.columns)
target = 'is_churn'
X = data[features]
y = data[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值