1.
案例背景
社交媒体平台的用户流失是一个常见且关键的问题。准确预测哪些用户可能流失,有助于平台提前采取针对性的挽留措施,如个性化推荐、专属优惠活动等,从而提高用户留存率,保障平台的商业价值和持续发展。
代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
# 数据读取
data = pd.read_csv('social_media_users.csv')
# 数据探索性分析
print('数据基本信息:')
data.info()
# 查看数据集行数和列数
rows, columns = data.shape
if rows < 1000:
# 小数据集(行数少于 1000)查看全量数据信息
print('数据全部内容信息:')
print(data.to_csv(sep='\t', na_rep='nan'))
else:
# 大数据集查看数据前几行信息
print('数据前几行内容信息:')
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 数据清洗
# 处理缺失值
data['age'] = data['age'].fillna(data['age'].median())
data['daily_active_time'] = data['daily_active_time'].fillna(data['daily_active_time'].mean())
data = data.dropna(subset=['is_churn'])
# 特征工程
# 计算用户的互动频率(点赞数 + 评论数 + 分享数)
data['interaction_frequency'] = data['likes_count'] + data['comments_count'] + data['shares_count']
# 对用户注册渠道进行独热编码
registration_channel_dummies = pd.get_dummies(data['registration_channel'], prefix='channel')
data = pd.concat([data, registration_channel_dummies], axis=1)
# 特征选择
features = ['age', 'daily_active_time', 'interaction_frequency', 'friends_count'] + list(registration_channel_dummies.columns)
target = 'is_churn'
X = data[features]
y = data[