目录
1.
案例背景
随着人们生活水平的提高,宠物市场日益繁荣,宠物食品的销售情况成为众多宠物食品企业关注的焦点。准确预测宠物食品的销售量,有助于企业合理安排生产、库存和营销活动,提高运营效率和经济效益。本案例将基于历史销售数据、宠物数量、季节因素、促销活动等信息,构建宠物食品销售预测模型。
代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.svm import SVR
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import StandardScaler
# 数据读取
data = pd.read_csv('pet_food_sales.csv')
# 数据探索性分析
print('数据基本信息:')
data.info()
# 查看数据集行数和列数
rows, columns = data.shape
if rows < 1000:
# 小数据集(行数少于 1000)查看全量数据信息
print('数据全部内容信息:')
print(data.to_csv(sep='\t', na_rep='nan'))
else:
# 大数据集查看数据前几行信息
print('数据前几行内容信息:')
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 数据清洗
# 处理缺失值
data['pet_population'] = data['pet_population'].fillna(data['pet_population'].mean())
data['promotion_expense'] = data['promotion_expense'].fillna(data['promotion_expense'].median())
data = data.dropna(subset=['sales_volume'])
# 特征工程
# 计算促销投入产出比(销售量 / 促销费用)
data['promotion_ROI'] = data['sales_volume'] / data['promotion_expense']
# 对宠物食品类型进行独热编码
food_type_dummies = pd.get_dummies(data['food_type'], prefix='food_type')
data = pd.concat([data, food_type_dummies], axis=1)
# 特征选择
features = ['pet_population', 'promotion_expense', 'promotion_ROI'] + list(food_type_dummies.columns)
target = 'sales_volume'
X = data[features]
y = data[target]
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# 模型训练
model = SVR(kernel='rbf', C=100, gamma=0.1)
model.fit(X_train, y_train)
# 模型预测
y_pred = model.predict(X_test)
# 模型评估
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"均方根误差 (RMSE): {rmse}")
print(f"决定系数 (R²): {r2}")
# 数据可视化
# 不同宠物食品类型的平均销售量柱状图
food_type_avg_sales = data.groupby('food_type&#