目录
1.
案例背景
元宇宙社交作为当下的热门话题,吸引了众多用户的关注。然而,如何提高用户在元宇宙社交平台的留存率,是平台运营者面临的重要挑战。通过对用户在平台上的各种行为数据进行分析,找出影响用户留存的关键因素,进而制定针对性的策略来提升用户留存率,对于元宇宙社交平台的长期发展至关重要。
代码实现
2. 主要的代码难点解析
2.1 数据清洗 - 缺失值处理
data['daily_login_time'] = data['daily_login_time'].fillna(data['daily_login_time'].mean())
data['friend_count'] = data['friend_count'].fillna(data['friend_count'].median())
data = data.dropna(subset=['is_retained'])
- 难点:用均值填充
daily_login_time
列和中位数填充friend_count
列,没有考虑不同用户群体(如新用户、老用户)在登录时间和好友数量上的差异。直接删除is_retained
列的缺失值会减少样本量,可能导致模型偏差。 - 解决思路:可以按照用户的注册时间、用户等级等因素对
daily_login_time
和friend_count
进行分组,用每组的均值或中位数填充。对于is_retained
列的缺失值,可以通过构建一个简单的分类模型,利用其他特征来预测该值。
2.2 特征工程 - 新特征计算与独热编码
data['user_activity'] = data['daily_login_time'] * data['friend_count']
registration_chann