完整的 Python 数据分析案例:元宇宙社交平台用户留存率分析

目录

1.

案例背景

代码实现

2. 主要的代码难点解析

2.1 数据清洗 - 缺失值处理

2.2 特征工程 - 新特征计算与独热编码

2.3 特征选择

2.4 模型训练与评估

2.5 数据可视化

3. 可能改进的代码

3.1 数据清洗与特征工程改进

3.2 模型改进

3.3 可视化改进


1.

案例背景

元宇宙社交作为当下的热门话题,吸引了众多用户的关注。然而,如何提高用户在元宇宙社交平台的留存率,是平台运营者面临的重要挑战。通过对用户在平台上的各种行为数据进行分析,找出影响用户留存的关键因素,进而制定针对性的策略来提升用户留存率,对于元宇宙社交平台的长期发展至关重要。

代码实现

2. 主要的代码难点解析

2.1 数据清洗 - 缺失值处理

data['daily_login_time'] = data['daily_login_time'].fillna(data['daily_login_time'].mean())
data['friend_count'] = data['friend_count'].fillna(data['friend_count'].median())
data = data.dropna(subset=['is_retained'])

  • 难点:用均值填充 daily_login_time 列和中位数填充 friend_count 列,没有考虑不同用户群体(如新用户、老用户)在登录时间和好友数量上的差异。直接删除 is_retained 列的缺失值会减少样本量,可能导致模型偏差。
  • 解决思路:可以按照用户的注册时间、用户等级等因素对 daily_login_time 和 friend_count 进行分组,用每组的均值或中位数填充。对于 is_retained 列的缺失值,可以通过构建一个简单的分类模型,利用其他特征来预测该值。
2.2 特征工程 - 新特征计算与独热编码

data['user_activity'] = data['daily_login_time'] * data['friend_count']
registration_chann
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值