Python 数据分析实战:揭秘热门旅游目的地的游客偏好与市场趋势

目录

一、案例背景

二、代码实现

2.1 数据收集

2.2 数据探索性分析

2.3 数据清洗

2.4 数据分析

2.4.1 旅游目的地评分分布分析

2.4.2 社交媒体讨论热度趋势分析

2.4.3 热门旅游目的地关键词分析

2.4.4 游客情感分析

三、主要的代码难点解析

3.1 数据收集

3.2 数据清洗 - 文本处理

3.3 数据分析 - 热门旅游目的地关键词分析

3.4 数据分析 - 游客情感分析

3.5 数据可视化

四、可能改进的代码

4.1 数据收集改进

4.2 数据清洗改进

4.3 数据分析改进

4.4 关键词分析改进


一、案例背景

在全球旅游业蓬勃发展的当下,旅游市场的竞争愈发激烈。游客对于旅游目的地的选择日益多样化,受多种因素影响,如目的地的自然风光、文化底蕴、旅游设施以及社交媒体的推荐等。了解游客的偏好和市场趋势,对于旅游目的地的规划、营销以及旅游企业的决策至关重要。本案例将运用 Python 对热门旅游目的地的相关数据进行分析,挖掘背后的规律,为旅游行业相关方提供有价值的参考。

二、代码实现

import requests
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import json

2.1 数据收集

从旅游点评网站、旅游局公开数据、社交媒体平台等多渠道收集数据。此处以模拟从旅游点评 API 和社交媒体 JSON 文件获取数据为例。

# 从旅游点评API获取热门旅游目的地的点评数据
travel_review_url = 'https://travel_review_api.com/destinations/reviews'
travel_review_headers = {
    'Authorization': 'Bearer your_travel_review_api_token'
}
travel_review_response = requests.get(travel_review_url, headers=travel_review_headers)
travel_review_data = travel_review_response.json()
travel_review_df = pd.DataFrame(travel_review_data['reviews'])

# 从社交媒体获取旅游相关话题讨论数据
with open('social_media_travel.json', 'r', encoding='utf-8') as f:
    social_travel_data = json.load(f)
social_travel_df = pd.DataFrame(social_travel_data)

2.2 数据探索性分析

# 查看旅游点评数据基本信息
print(travel_review_df.info())
# 查看社交媒体旅游讨论数据前几行
print(social_travel_df.head())

# 统计旅游点评数据中不同评分的数量
rating_count = travel_review_df['rating'].value_counts()
print(rating_count)

# 查看社交媒体旅游讨论数据中点赞数的分布情况
sns.histplot(social_travel_df['likes'], kde=True)
plt.title('Distribution of Likes in Social Media Travel Discussions')
plt.xlabel('Likes')
plt.ylabel('Count')
plt.show()

2.3 数据清洗

# 处理旅游点评数据的缺失值,填充评论为空的记录为'No comment'
travel_review_df['comment'] = travel_review_df['comment'].fillna('No comment')

# 处理社交媒体旅游讨论数据的文本,去除特殊字符和停用词
import re
from nltk.corpus import stopwords
import nltk
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def clean_text(text):
    text = re.sub(r'[^a-zA-Z]', ' ', text)
    text = text.lower()
    words = text.split()
    filtered_words = [word for word in words if word not in stop_words]
    return ' '.join(filtered_words)

social_travel_df['clean_text'] = social_travel_df['text'].apply(clean_text)

2.4 数据分析

2.4.1 旅游目的地评分分布分析
# 绘制旅游目的地评分的柱状图
plt.figure(figsize=(10, 6))
sns.countplot(x='rating', data=travel_review_df)
plt.title('Rating Distribution of Travel Destinations')
plt.xlabel('Rating')
plt.ylabel('Count')
plt.show()
2.4.2 社交媒体讨论热度趋势分析
# 将社交媒体讨论数据的发布日期列转换为日期时间类型
social_travel_df['post_date'] = pd.to_datetime(social_travel_df['post_date'])
social_travel_df['year_month'] = social_travel_df['post_date'].dt.to_period('M')

# 统计每月社交媒体讨
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值