Python 数据分析实战:电影票房影响因素剖析与预测建模

目录

一、案例背景

二、代码实现

2.1 数据收集与导入

2.2 数据探索性分析

2.3 数据清洗

2.4 数据分析

2.4.1 影片类型与票房关系

2.4.2 演员影响力分析

2.4.3 上映档期对票房的影响

2.4.4 口碑与票房关系

2.4.5 构建票房预测模型

三、主要的代码难点解析

3.1 数据收集与导入

3.2 数据清洗 - 缺失值处理

3.3 数据清洗 - 异常值处理

3.4 数据分析 - 演员影响力分析

3.5 数据分析 - 构建票房预测模型

四、可能改进的代码

4.1 数据收集改进

4.2 数据清洗改进

4.3 数据分析改进

4.4 特征工程改进

4.5 模型评估与调优改进


一、案例背景

在全球电影产业蓬勃发展的当下,电影票房成为衡量影片商业成功的关键指标。一部电影的票房表现受到众多因素影响,如影片类型、演员阵容、上映档期、口碑评价等。深入分析这些因素与票房之间的关系,不仅能为电影制作方、发行方提供决策支持,助力他们在影片策划、制作、宣发等环节做出更明智的选择,还能帮助投资者评估电影项目的潜在收益。本案例将运用 Python 对电影票房数据展开全面分析,并构建预测模型,挖掘票房背后的规律。

二、代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

2.1 数据收集与导入

从专业电影数据平台(如 Box Office Mojo、IMDb Pro 等)收集电影票房数据,涵盖电影名称、上映日期、票房收入、影片类型、导演、主演、制作成本等信息。同时,从影评网站(如豆瓣、IMDb)获取电影评分数据,从社交媒体平台(如微博、Twitter)获取电影话题热度数据(通过相关 API 或网络爬虫获取,注意遵循平台规则和法律法规)。假设数据存储在 CSV 文件movie_data.csv中,进行导入。

data = pd.read_csv('movie_data.csv')

2.2 数据探索性分析

# 查看数据基本信息
print(data.info())

# 查看数据前几行
print(data.head())

# 统计各影片类型的数量
genre_count = data['genre'].value_counts()
print(genre_count)

# 查看票房收入的统计描述
box_office_stats = data['box_office'].describe()
print(box_office_stats)

2.3 数据清洗

# 处理缺失值
# 假设用均值填充制作成本的缺失值
data['production_cost'].fillna(data['production_cost'].mean(), inplace=True)
# 删除票房收入缺失的记录
data.dropna(subset=['box_office'], inplace=True)

# 处理异常值
# 基于票房收入的四分位数识别异常值并处理
q1 = data['box_office'].quantile(0.25)
q3 = data['box_office'].quantile(0.75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
data = data[(data['box_office'] >= lower_bound) & (data['box_office'] <= upper_bound)]

# 数据类型转换
# 将上映日期转换为日期时间类型
data['release_date'] = pd.to_datetime(data['release_date'])

2.4 数据分析

2.4.1 影片类型与票房关系

# 计算各影片类型的平均票房
avg_box_office_by_genre = data.groupby('genre')['box_office'].mean().reset_index()

# 绘制柱状图
plt.figure(figsize=(10, 6))
sns.barplot(x='genre', y='box_office', data=avg_box_office_by_genre)
plt.title('Average Box Office by Movie Genre')
plt.xlabel('Genre')
plt.ylabel('Average Box Office')
plt.xticks(rotation=45)
plt.show()
2.4.2 演员影响力分析

# 统计主演出演电影的总票房
star_total_box_office = data.groupby('star')['box_office'].sum().reset_index()
star_total_box_office = star_total_box_office.sort_values(by='box_office', ascending=False)

# 绘制前10名主演的总票房柱状图
top_stars = star_total_box_office.head(10)
plt.figure(figsize=(12, 6))
sns.barplot(x='star', y='box_office', data=top_stars)
plt.title('Total Box Office of Top 10 Stars')
plt.xlabel('Star')
plt.ylabel('Total Box Office')
plt.xticks(rotation=45)
plt.show()
2.4.3 上映档期对票房的影响

# 提取上映月份
data['release_month'] = data['release_date'].dt.month

# 计算各月份的平均票房
avg
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值