SparkSQL 简化

 

1.Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame(底层也是RDD)并且作为分布式SQL查询引擎的作用。

2.Spark SQL 的特点:1.易整合,2.统一的数据访问,3.兼容Hive,4.标准的数据连接

​​​​​​ 3.DataFrame:是一种以RDD为基础的分布式数据集,类似于传统数据库的二维表格,DataFrame带有Schema元信息(可以理解为数据库的列名和类型),即DataFrame所表示的二维表数据集的每一列都带有名称和类型,但底层做了更多的优化。

4.DataSet:它集中了RDD的优点以及Spark SQL优化的执行引擎。与RDD相比,保存了更多的描述信息,概念上等同于关系型数据库中的二维表。 DataFrame其实就是Dateset[Row]

5.RDD、DataFrame、DataSet的区别

RDD[Person]以Person为类型参数,但Spark框架本身不了解 Person类的内部结构。

DataFrame提供了详细的结构信息schema,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。这样看起来就像一张表了

DataSet[Person]中不光有schema信息,还有类型信息

总结

DataFrame = RDD - 泛型  +  Schema  + SQL + 优化

DataSet = DataFrame  + 泛型

DataSet  =  RDD   +  Schema  + SQL + 优化

DataFrame = DataSet[Row]

6.创建DataFrame

(1)schema+row 的方式

1 zhangsan 20
2 lisi 29
3 wangwu 25
4 zhaoliu 30
5 tianqi 35
6 kobe 40
object processtag2 {

  val path ="E:\\新建文件夹\\person.txt"

  def main(args: Array[String]): Unit = {

    //准备环境
    val spark = SparkSession.builder().master("local[2]").appName("TextRDDApp").getOrCreate()
    //读取文本
    val arrRDD: RDD[Array[String]] = spark.sparkContext.textFile(path).map( x=>x.split(" ") )
   val rddRow =arrRDD.map(x=>{Row(
      x(0).toLong,
      x(1),
      x(2).toLong
    )})

   val schema= StructType(Array(
      StructField("id",LongType,false),
      StructField("name",StringType,false),
      StructField("age",LongType,false)
    ))
    val fileDF: DataFrame = spark.createDataFrame(rddRow,schema)
    fileDF.show()
  }

}

(2)样例类的方式(toDF)

object processtag3 {
  private val mysqldriver = testENV.MYSQLDRIVER
  private val mysqlurl = testENV.MYSQLURL
  private val mysqluser = testENV.MYSQLUSER
  private val mysqlpwd = testENV.MYSQLPWD
  private val mysqltesttable = testENV.MYSQLTESTTABLE
  val mysqltesttable2 = testENV.MYSQLTESTTABLE1
  private val prop = testENV.mysqlProp
  val path ="E:\\新建文件夹\\person.txt"
  def main(args: Array[String]): Unit = {
    val spark=SparkSession.builder()
      .appName("caseDF")
      .master("local[*]")
      .getOrCreate()
    import spark.implicits._
    val arrDS: Dataset[Array[String]] = spark.read.textFile(path).map(x=>x.split(" "))
    val PsersonDS: Dataset[Pserson] = arrDS.map(x=>Pserson(x(0).toInt ,x(1) ,x(2).toInt))
    val DF: DataFrame = PsersonDS.toDF()
    DF.select($"name",$"age").show//DSL风格
    DF.filter($"age">=23).show()//DSL风格
    DF.createOrReplaceTempView("Pserson")
    val tabledata=spark.sql(
      """
        |select * from Pserson
      """.stripMargin)
    tabledata.show()

    PsersonDS.write
      .mode(SaveMode.Append)
      .option("driver", mysqldriver)
      .jdbc(mysqlurl, mysqltesttable2, prop)

  }
case class Pserson (id:Int,name:String,age:Int)
}

7.​​​​​​​创建DataSet

(1)createDataset()的方式

object processDS {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder().master("local[*]").appName("TextRDDApp").getOrCreate()
    val data=   List(Pserson("zhangsan",20),Pserson("lisi",30))
    import spark.implicits._
    val personDS: Dataset[Pserson] = spark.createDataset(data)
    personDS.show()

  }
  case class Pserson (name:String,age:Int)
}

(2)另一种的方式创建DS

object processDS1 {
  val path ="E:\\新建文件夹\\json.json"
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder().master("local[*]").appName("TextRDDApp").getOrCreate()
    import  spark.implicits._
    val jsonDs: Dataset[Pserson] = spark.read.json(path).as[Pserson]
    jsonDs.show()


  }
  case class Pserson (name:String,age:Long)
}

注意:DataFrame还是DataSet都可以注册成表,之后就可以使用SQL进行查询

​​​​​​​8.两种查询风格

(1)​​​​​​​DSL风格

personDF.select(personDF.col("id"), personDF.col("name"), personDF.col("age") + 1).show
personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show
personDF.select(col("id"), col("name"), col("age") + 1).show
personDF.select("id","name","age").show
personDF.select($"name",$"age",$"age"+1).show

(2)​​​​​​​SQL风格

spark.sql("select name,age+1 from t_person").show
spark.sql("select name,age from t_person where age > 25").show
spark.sql("select count(age) from t_person where age > 30").show
spark.sql("select age, count(age) from t_person group by age").show

如有不全,请多多指导!

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值