1.Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame(底层也是RDD)并且作为分布式SQL查询引擎的作用。
2.Spark SQL 的特点:1.易整合,2.统一的数据访问,3.兼容Hive,4.标准的数据连接
3.DataFrame:是一种以RDD为基础的分布式数据集,类似于传统数据库的二维表格,DataFrame带有Schema元信息(可以理解为数据库的列名和类型),即DataFrame所表示的二维表数据集的每一列都带有名称和类型,但底层做了更多的优化。
4.DataSet:它集中了RDD的优点以及Spark SQL优化的执行引擎。与RDD相比,保存了更多的描述信息,概念上等同于关系型数据库中的二维表。 DataFrame其实就是Dateset[Row]
5.RDD、DataFrame、DataSet的区别
RDD[Person]以Person为类型参数,但Spark框架本身不了解 Person类的内部结构。
DataFrame提供了详细的结构信息schema,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。这样看起来就像一张表了
DataSet[Person]中不光有schema信息,还有类型信息
总结
DataFrame = RDD - 泛型 + Schema + SQL + 优化
DataSet = DataFrame + 泛型
DataSet = RDD + Schema + SQL + 优化
DataFrame = DataSet[Row]
6.创建DataFrame
(1)schema+row 的方式
1 zhangsan 20
2 lisi 29
3 wangwu 25
4 zhaoliu 30
5 tianqi 35
6 kobe 40
object processtag2 {
val path ="E:\\新建文件夹\\person.txt"
def main(args: Array[String]): Unit = {
//准备环境
val spark = SparkSession.builder().master("local[2]").appName("TextRDDApp").getOrCreate()
//读取文本
val arrRDD: RDD[Array[String]] = spark.sparkContext.textFile(path).map( x=>x.split(" ") )
val rddRow =arrRDD.map(x=>{Row(
x(0).toLong,
x(1),
x(2).toLong
)})
val schema= StructType(Array(
StructField("id",LongType,false),
StructField("name",StringType,false),
StructField("age",LongType,false)
))
val fileDF: DataFrame = spark.createDataFrame(rddRow,schema)
fileDF.show()
}
}
(2)样例类的方式(toDF)
object processtag3 {
private val mysqldriver = testENV.MYSQLDRIVER
private val mysqlurl = testENV.MYSQLURL
private val mysqluser = testENV.MYSQLUSER
private val mysqlpwd = testENV.MYSQLPWD
private val mysqltesttable = testENV.MYSQLTESTTABLE
val mysqltesttable2 = testENV.MYSQLTESTTABLE1
private val prop = testENV.mysqlProp
val path ="E:\\新建文件夹\\person.txt"
def main(args: Array[String]): Unit = {
val spark=SparkSession.builder()
.appName("caseDF")
.master("local[*]")
.getOrCreate()
import spark.implicits._
val arrDS: Dataset[Array[String]] = spark.read.textFile(path).map(x=>x.split(" "))
val PsersonDS: Dataset[Pserson] = arrDS.map(x=>Pserson(x(0).toInt ,x(1) ,x(2).toInt))
val DF: DataFrame = PsersonDS.toDF()
DF.select($"name",$"age").show//DSL风格
DF.filter($"age">=23).show()//DSL风格
DF.createOrReplaceTempView("Pserson")
val tabledata=spark.sql(
"""
|select * from Pserson
""".stripMargin)
tabledata.show()
PsersonDS.write
.mode(SaveMode.Append)
.option("driver", mysqldriver)
.jdbc(mysqlurl, mysqltesttable2, prop)
}
case class Pserson (id:Int,name:String,age:Int)
}
7.创建DataSet
(1)createDataset()的方式
object processDS {
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().master("local[*]").appName("TextRDDApp").getOrCreate()
val data= List(Pserson("zhangsan",20),Pserson("lisi",30))
import spark.implicits._
val personDS: Dataset[Pserson] = spark.createDataset(data)
personDS.show()
}
case class Pserson (name:String,age:Int)
}
(2)另一种的方式创建DS
object processDS1 {
val path ="E:\\新建文件夹\\json.json"
def main(args: Array[String]): Unit = {
val spark = SparkSession.builder().master("local[*]").appName("TextRDDApp").getOrCreate()
import spark.implicits._
val jsonDs: Dataset[Pserson] = spark.read.json(path).as[Pserson]
jsonDs.show()
}
case class Pserson (name:String,age:Long)
}
注意:DataFrame还是DataSet都可以注册成表,之后就可以使用SQL进行查询
8.两种查询风格
(1)DSL风格
personDF.select(personDF.col("id"), personDF.col("name"), personDF.col("age") + 1).show
personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show
personDF.select(col("id"), col("name"), col("age") + 1).show
personDF.select("id","name","age").show
personDF.select($"name",$"age",$"age"+1).show
(2)SQL风格
spark.sql("select name,age+1 from t_person").show
spark.sql("select name,age from t_person where age > 25").show
spark.sql("select count(age) from t_person where age > 30").show
spark.sql("select age, count(age) from t_person group by age").show
如有不全,请多多指导!