【智能算法】PSO粒子群优化算法(C++实现)

粒子群优化算法(Particle Swarm Optimization, PSO)是进化计算的一个分支,是一种模拟自然界的生物活动的演化算法。

PSO模拟了自然界鸟群捕食的过程,通过群体之间的协作来找到问题的全局最优解。

 

PSO的主要流程如下:

这里有一个动态图模拟粒子群优化算法的演化过程:

来自WIKIPEDIA

具体代码如下:

1、定义参数

#define PI 3.14159265358979323846
#define POPSIZE 20                         //粒子个数
#define MAXINTERATION 2000                 //最大迭代次数
#define NVARS 10                           //参数个数
#define WMAX 0.9                           //惯量权重最大值
#define WMIN 0.4                           //惯量权重最小值

struct particle {                          //单个粒子
	double pBest[NVARS];
	double v[NVARS];
	double x[NVARS];
	double upper[NVARS];
	double lower[NVARS];
};

double w;                                  //惯量权重
double c1 = 2.0;                           //加速因子1
double c2 = 2.0;                           //加速因子2
double absbound;                           //上下界绝对值
double vmax;                               //最大速度
double gBest[NVARS];                       //全局最优解
particle particles[POPSIZE];               //粒子群

2、函数定义

double evalfunc(double[], int);            //评估函数
double avg(double[], int);                 //求平均数
double stddev(double[], int);              //求标准差
void initialize(int);                      //初始化函数
double randval(double, double);            //求范围(lower,upper)之间的随机数
void evaluate(int);                        //评估粒子适应值
void update(int, int);                     //利用更新公式更新每个粒子的速度和位置以及历史最优位置
void fit(void);                            //更新群体历史最优位置

3、评估函数

double evalfunc(double parameter[], int FUNC = 1) {
	/*          10个评估函数            */
	/* 通过参数FUNC来选择想要的评估函数 */
	if (FUNC == 1) {
		double val = 0;
		for (int i = 0; i < NVARS; i++) {
			val += parameter[i] * parameter[i];
		}
		return val
  • 10
    点赞
  • 109
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值