Uva 11809 Floating-Point Numbers

11809 - Floating-Point Numbers

Time limit: 1.000 seconds

题目链接:https://uva.onlinejudge.org/index.PHP?option=com_onlinejudge&Itemid=8&category=226&page=show_problem&problem=2909

Floating-point numbers are represented differently in computers than integers. That is why a 32-bitfloating-point number can represent values in the magnitude of 10^38 while a 32-bit integer can onlyrepresent values as high as 2^32.

Although there are variations in the ways floating-point numbers are stored in Computers, in thisproblem we will assume that floating-point numbers are stored in the following way:


Floating-point numbers have two parts mantissa and exponent. M-bits are allotted for mantissaand E bits are allotted for exponent. There is also one bit that denotes the sign of number (If thisbit is 0 then the number is positive and if it is 1 then the number is negative) and another bit thatdenotes the sign of exponent (If this bit is 0 then exponent is positive otherwise negative). The value ofmantissa and exponent together make the value of the floating-point number. If the value of mantissais m then it maintains the constraints 12 ≤ m < 1. The left most digit of mantissa must always be 1 tomaintain the constraint 12 ≤ m < 1. So this bit is not stored as it is always 1. So the bits in mantissaactually denote the digits at the right side of decimal point of a binary number (Excluding the digitjust to the right of decimal point)

In the figure above we can see a floating-point number where M = 8 and E = 6. The largest valuethis floating-point number can represent is (in binary)

0.111111111(2)×2^111111(2). The decimal equivalentto this number is: 0.998046875 × 2^63 = 9205357638345293824(10). Given the maximum possible valuerepresented by a certain floating point type, you will have to find how many bits are allotted formantissa (M) and how many bits are allotted for exponent (E) in that certain type.

Input

The input file contains around 300 line of input. Each line contains a floating-point number F thatdenotes the maximum value that can be represented by a certain floating-point type. The floating pointnumber is expressed in decimal exponent format. So a number AeB actually denotes the value A×10^B.A line containing ‘0e0’ terminates input. The value of A will satisfy the constraint 0 < A < 10 andwill have exactly 15 digits after the decimal point.

Output

For each line of input produce one line of output. This line contains the value of M and E. You canassume that each of the inputs (except the last one) has a possible and unique solution. You can alsoassume that inputs will be such that the value of M and E will follow the constraints: 9 ≥ M ≥ 0 and30 ≥ E ≥ 1. Also there is no need to assume that (M + E + 2) will be a multiple of 8.

Sample Input

5.699141892149156e76
9.205357638345294e18
0e0

Sample Output

5 8
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const double min_differ=1e-5;
double M[11][33];
long long E[11][33];
int main()
{
    int i,j;
    double m,t;
    long long e;
    char s[123];
    for(i=0;i<=9;i++)
    {
        for(j=0;j<=30;j++)
        {
            e=(1<<j)-1;//相当于2的b次方-1
            m=1-1.0/(1<<(i+1));//1<<(i+1)相当于2的i+1次方
            t=log10(m)+e*log10(2);
            E[i][j]=t/1;//向下取整
            M[i][j]=pow(10,t-E[i][j]);
        }
    }//打表
    while(~scanf("%s",s))
    {
        if(strcmp(s,"0e0")==0) break;
        *(strchr(s,'e'))=' ';//将字符串中的e替换为空格
        sscanf(s,"%lf %lld",&m,&e);
        for(i=0;i<=9;i++)
        {
            for(j=1;j<=30;j++)
            {
                if(e==E[i][j]&&fabs(m-M[i][j])<min_differ)
                {
                    printf("%d %d\n",i,j);
                    break;
                }
            }
        }
    }
    return 0;
}


8 6
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值