机器学习
文章平均质量分 72
机器学习
車鈊
热爱编程,正在钻研网络安全方向,欢迎来交流啊。
展开
-
[作业/人工智能]作业6:CNN实现XO识别
文章目录前置说明所用数据集名词、模块介绍如何定义自己的网络?训练集和测试机划分构建模型和训练模型代码主体手动构建的神经网络训练过程中的损失函数测试模型 ,计算准确率模型的特征图源码结果输出卷积核源代码结果问题解决问题1问题2前置说明所用数据集所用数据集为XO图像名词、模块介绍可学习参数:在训练过程中,经过神经网络训练可以进行优化的参数,你如反向传播优化和更新权值。卷积层和全连接层的权重、bias、BatchNorm的γ、β。不可学习的参数(超参数):超参数是在开始学习过程之前设置值的参数,即框原创 2022-05-27 10:44:14 · 460 阅读 · 0 评论 -
[作业/人工智能]作业5 - CNN卷积、池化、激活测试
卷积、池化与激活手工实现测试程序import numpy as npx = np.array([[-1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, 1, -1, -1, -1, -1, -1, 1, -1], [-1, -1, 1, -1, -1, -1, 1, -1, -1], [-1, -1, -1, 1, -1, 1, -1, -1, -1], [原创 2022-05-22 22:01:30 · 412 阅读 · 0 评论 -
[作业/人工智能] 作业4 CNN - 卷积
文章目录概念总结CNN的结构和各层次功能 卷积卷积核特征图(feature map)特征选择池化(Pooling)多通道神经层深度特征映射总结计算机中的色彩空间卷积核作用和原理探究常见卷积核类型锐化卷积核轮廓检测卷积核高斯卷积核水平边缘检测卷积核垂直边缘检测卷积核编程实现经典卷积核测试测试图片调整经典卷积核参数更多类型卷积核尝试彩色图片边缘检测色彩空间转换原图像图像信息方法-Canny边缘检测算法尝试进行边缘检测收获总结主要参考资料:《神经网络和深度学习》— 邱锡鹏所用测试图片来源于公开网络,无意侵犯创原创 2022-05-12 13:28:50 · 1312 阅读 · 2 评论 -
[作业/人工智能] 作业3:例题程序复现 PyTorch版
文章目录使用Pytorch复现课上例题对比【作业3】和【作业2】程序,是否相同,正确性如何?作业2程序修改、展示对比【作业2】与【作业3】的反向传播的实现方法激活函数使用Pytorch自带的torch.sigmoid()再修改激活函数为Relu损失函数MSE用PyTorch自带函数t.nn.MSELoss()替代损失函数修改为交叉熵函数改变步长权值w1-w8初始值换为随机数,对比【作业2】指定权值结果总结反向传播原理和编码实现使用Pytorch复现课上例题# https://blog.csdn.net/原创 2022-05-09 23:27:12 · 440 阅读 · 0 评论 -
[作业/人工智能]作业2-反向传播例题复现
非线性变换–Sigmoid对于任何函数,仅进行线性变换,最后都会统一为y = W * x + b的形式,这就导致线性变换的层数再多,也无法提高模型的效果,对于此问题,要使用非线性变换函数,例如Sigmoid函数,反向传播采用的求导方法–链式求导法则对于 H = f · g,可以利用复合函数上每一步的偏导数进行累积,最后求出整体导数反向传播算法的过程其过程总结为,“正向传播”求结果,“反向传播”回传误差,利用梯度寻求损失函数最小,为模型更新合适的权重,通过前向传播计算出结果,计算预测结果的原创 2022-05-01 21:52:13 · 1710 阅读 · 0 评论 -
[作业/人工智能]作业1-Pytorch实现反向传播
分享关于Python使用的一些个人分享,包管理在日常学习当中,我们完成任务一般只用到特定的库,且使用的Python版本不完全相同(尤其是一些仅存在于Python2.7的包),为了方便管理和打包,我们可以安装多个版本Python,每个只安装特定模块,完成特定任务(如机器学习相关算法)使用时在Pycharm中导入对应环境即可。另外,使用开源环境Anaconda3对于包管理十分有效,十分推荐用于机器学习、数学分析等相关工作。虚拟环境在项目开发时,还推荐使用Python的venv,它可以有效和本机原创 2022-05-01 13:20:51 · 2115 阅读 · 0 评论