AI(003) - 笔记 - 第二周 - Logistic回归基本原理

这篇博客深入介绍了Logistic回归的基本原理,从Bernoulli分布开始,详细阐述了Logistic回归模型、神经科学中的应用、线性决策函数、极大似然估计、正则化以及优化方法,特别是梯度下降和牛顿法在解决Logistic回归中的应用。
摘要由CSDN通过智能技术生成

笔记:Logistic回归基本原理

app显示公式乱码,请使用浏览器或电脑查看。


1、Bernoulli(亮点分布,0-1分布)

成功变量X取值1,否则取值0。成功概率为 θ θ ,我们称X服从参数为 θ θ 的Bernoulli分布,记作 XBer(θ) X ~ B e r ( θ )

  • 概率函数(pmf)为:

p(x)=θx(1θ)1x={ θ,1θ,if x=1if x=0 p ( x ) = θ x ( 1 − θ ) 1 − x = { θ , if  x = 1 1 − θ , if  x = 0

  • 均值: μ=θ μ = θ
  • 方差: σ2=θ×(1θ) σ 2 = θ × ( 1 − θ )

2、Logistic回归模型

Logistic回归模型是一个线性模型

  • 条件概率:

p(y|x)μ(x)=Ber(y|μ(x))=σ(wTx) p ( y | x ) = B e r ( y | μ ( x ) ) μ ( x ) = σ ( w T x )

  • sigmoid函数(S形函数):

σ(a)=11+exp(a)=exp(a)exp(a)+1 σ ( a ) = 1 1 + e x p ( − a ) = e x p ( a ) e x p ( a ) + 1

  • 亦被称为logistic函数或logit函数,将实数a变换到[0, 1]区间

3、神经科学中的Logistic回归

  • 神经元对其输入进行加权和: f(x)=wTx f ( x ) = w T x

  • 在Logistic回归,定义Log Odds Ratio:

LOR(x)=logp(y=1|x,w)p(y=0|x,w)=log[11+exp(wTx)×1+exp(wTx)exp(wTx)]=log[exp(w
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值