lasso和ridge的区别

  • lasso 也叫L1正则化 惩罚系数的绝对值

  ridge 也叫L2正则化 惩罚系数的平方

 

  • ridge 惩罚后 每个系数都收缩

  lasso 惩罚后,有的系数直接变成0 其他系数收缩

 

  • LASSO: least absolute selection and shrinkage operator

  lasso 有变量选择的功能

 

===============

共同点为:

(1) 当截距项存在时,都不惩罚截距项

beta_0 = mean(y)

(2) 都是有偏的

(3) 都要把系数scale后,再进行惩罚,因为 sum || beta||时,要保证fair

 

=============

关于bias 和variance

bias of lasso estimate  increasing as lambda increasing

variance of lasso estimate increasing as lambda increasing

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值