- lasso 也叫L1正则化 惩罚系数的绝对值
ridge 也叫L2正则化 惩罚系数的平方
- ridge 惩罚后 每个系数都收缩
lasso 惩罚后,有的系数直接变成0 其他系数收缩
- LASSO: least absolute selection and shrinkage operator
lasso 有变量选择的功能
===============
共同点为:
(1) 当截距项存在时,都不惩罚截距项
beta_0 = mean(y)
(2) 都是有偏的
(3) 都要把系数scale后,再进行惩罚,因为 sum || beta||时,要保证fair
=============
关于bias 和variance
bias of lasso estimate increasing as lambda increasing
variance of lasso estimate increasing as lambda increasing