第六章 图 学习总结

图的逻辑结构

图的定义
图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:
G=(V,E)
其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。

在线性表中,元素个数可以为零,称为空表;
在树中,结点个数可以为零,称为空树;
在图中,顶点个数不能为零,但可以没有边。

图的遍历操作

图的遍历是从图中某一顶点出发,对图中所有顶点访问一次且仅访问一次。

1.深度优先遍历 (DFS:Depth First Search)
基本思想 :
⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。
2. 广度优先遍历 (BFS:Broad First Search ;FIFO: First In First Out)
基本思想:
⑴ 访问顶点v;
⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;
⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。
注意:
图的特点:顶点之间的关系是m:n,即任何两个顶点之间都可能存在关系(边),无法通过存储位置表示这种任意的逻辑关系,所以,图无法采用顺序存储结构。
图的存储方法:
邻接矩阵(数组表示法)
基本思想:
用一个一维数组存储图中顶点的信息
用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。
假设图G=(V,E)有n个顶点,则邻接矩阵是一个n×n的方阵,定义为:arc[i][j]

图的存储结构及实现

const int MaxSize=10; 
template <class T>
class Mgraph{
   public:
      MGraph(T a[ ], int n, int e );   
       ~MGraph( )
       void DFSTraverse(int v); 
       void BFSTraverse(int v);
        ……
   private:
       T vertex[MaxSize]; 
       int arc[MaxSize][MaxSize]; 
       int vertexNum, arcNum; 
};

构造函数

  1. 确定图的顶点个数和边的个数;
  2. 输入顶点信息存储在一维数组vertex中;
  3. 初始化邻接矩阵;
  4. 依次输入每条边存储在邻接矩阵arc中;
    4.1 输入边依附的两个顶点的序号i, j;
    4.2 将邻接矩阵的第i行第j列的元素值置为1;
    4.3 将邻接矩阵的第j行第i列的元素值置为1;
template <class T>
MGraph::MGraph(T a[ ], int n, int e) {
    vertexNum=n; arcNum=e;
    for (i=0; i<vertexNum; i++) 
        vertex[i]=a[i];
    for (i=0; i<vertexNum; i++)    //初始化邻接矩阵
	   for (j=0; j<vertexNum; j++)
           arc[i][j]=0;             
    for (k=0; k<arcNum; k++) {
        cin>>i>>j;     //边依附的两个顶点的序号
        arc[i][j]=1;  arc[j][i]=1;  //置有边标志    
    }

深度优先遍历(DFS)
⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

int visited[MaxSize];
template <class T>
void MGraph::DFSTraverse(int v){
     cout<<vertex[v]; visited [v]=1;
     for (j=0; j<vertexNum; j++)
         if (arc[v][j]==1 && visited[j]==0)
            DFSTraverse( j );
}

广度优先遍历(BFS)
⑴ 访问顶点v;
⑵ 依次访问v的各个未被访问的邻接点v1, v2, …, vk;
⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

int visited[MaxSize];
template <class T>
void MGraph::BFSTraverse(int v){     
    front=rear=-1;   //假设采用顺序队列且不会发生溢出
   int Q[MaxSize]; cout<<vertex[v]; visited[v]=1;  Q[++rear]=v; 
    while (front!=rear)    {
         v=Q[++front];   
         for (j=0; j<vertexNum; j++)
            if (arc[v][j]==1 && visited[j]==0 ) {
                  cout<<vertex[j]; visited[j]=1; Q[++rear]=j;
            }
      }
}

邻接表
邻接表存储的基本思想:
对于图的每个顶点vi,将所有邻接于vi的顶点链成一个单链表,称为顶点vi的边表(对于有向图则称为出边表)
所有边表的头指针和存储顶点信息的一维数组构成了顶点表。

邻接表有两种结点结构:顶点表结点和边表结点。

顶点表

vertexfirstedge

边表

adjvexnext

vertex:数据域,存放顶点信息。
firstedge:指针域,指向边表中第一个结点。
adjvex:邻接点域,边的终点在顶点表中的下标。
next:指针域,指向边表中的下一个结点。

定义邻接表的结点

struct ArcNode{   
      int adjvex; 
      ArcNode *next;
};

template <class T>
struct VertexNode{
      T vertex;
      ArcNode *firstedge;
};

每个结点对应图中的一条边,
邻接表的空间复杂度为O(n+e)。

邻接表存储有向图的类

const int MaxSize=10;    //图的最大顶点数
template <class T>
class ALGraph
{    
   public:
       ALGraph(T a[ ], int n, int e);   
       ~ALGraph;    
       void DFSTraverse(int v);      
       void BFSTraverse(int v);      
   ………
  private:
       VertexNode adjlist[MaxSize];   
       int vertexNum, arcNum;       
};

邻接表中图的基本操作——构造函数

  1. 确定图的顶点个数和边的个数;
  2. 输入顶点信息,初始化该顶点的边表;
  3. 依次输入边的信息并存储在边表中;
    3.1 输入边所依附的两个顶点的序号i和j;
    3.2 生成邻接点序号为j的边表结点s;
    3.3 将结点s插入到第i个边表的头部;
template <class T>
ALGraph::ALGraph(T a[ ], int n, int e)
{   
    vertexNum=n; arcNum=e; 
    for (i=0; i<vertexNum; i++)   
    {
       adjlist[i].vertex=a[i];
       adjlist[i].firstedge=NULL;      
    } 
    for (k=0; k<arcNum; k++)   
    {
         cin>>i>>j;    
         s=new ArcNode; s->adjvex=j;  	        
         s->next=adjlist[i].firstedge;    
         adjlist[i].firstedge=s;
    }
}


深度优先遍历

template <class T>
void ALGraph::DFSTraverse(int v){        
    cout<<adjlist[v].vertex;  visited[v]=1;
    p=adjlist[v].firstedge;    
    while (p!=NULL)     {
        j=p->adjvex;
        if (visited[j]==0) DFSTraverse(j);
    p=p->next;           
    }

广度优先遍历

template <class T>
void ALGraph::BFSTraverse(int v){
   front=rear=-1;   
   cout<<adjlist[v].vertex;    visited[v]=1;   Q[++rear]=v;   
   while (front!=rear)  {
       v=Q[++front];    p=adjlist[v].firstedge;    
       while (p!=NULL)  {
            j= p->adjvex;
            if (visited[j]==0) {
                cout<<adjlist[j].vertex;  visited[j]=1; Q[++rear]=j;
            }
            p=p->next;
       }
    }
}

十字链表: 有向图的链式存储结构
顶点表结点

vertexfirstinfirstout

vertex:数据域,存放顶点信息;
firstin:入边表头指针;
firstout:出边表头指针;

边表结点

tailvexheadvexheadlinktaillink

tailvex:弧的起点在顶点表中的下标;
headvex:弧的终点在顶点表中的下标;
headlink:入边表指针域;
taillink:出边表指针域。

最小生成树

生成树的代价:设G=(V,E)是一个无向连通网,生成树上各边的权值之和称为该生成树的代价。
最小生成树:在图G所有生成树中,代价最小的生成树称为最小生成树。
MST( minimum spanning tree)性质
假设G=(V, E)是一个无向连通网,U是顶点集V的一个非空子集。若(u, v)是一条具有最小权值的边,其中u∈U,v∈V-U,则必存在一棵包含边(u, v)的最小生成树。

MST性质的应用
构造最小代价生成树两种方法:
Prime法:加点法
Kruskal方法:加边法

普里姆(Prim)算法

基本思想:
设G=(V, E)是具有n个顶点的连通网,
T=(U, TE)是G的最小生成树,
T的初始状态为U={u0}(u0∈V),TE={ },
重复执行下述操作:
在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。

数据结构设计:
数组lowcost[n]:用来保存集合V-U中各顶点与集合U中顶点最短边的权值,lowcost[v]=0表示顶点v已加入最小生成树中;
数组adjvex[n]:用来保存该边所依附的(集合V-U中各顶点与集合U中顶点的最短边)集合U中的顶点。

伪代码:

  1. 初始化两个辅助数组lowcost(=arc[0][i])和adjvex(=0)(0是始点);
  2. 输出顶点u0,将顶点u0加入集合U中;
  3. 重复执行下列操作n-1次
    3.1 在lowcost中选取最短边(lowcost[k]),取对应的顶点序号k;
    3.2 输出顶点k和对应的权值;
    3.3 将顶点k加入集合U中(lowcost[k]=0);
    3.4 调整数组lowcost和adjvex;
Void prime(MGraph G){
    for(int i=1;i<G.vertexNu;i++){
        lowcost[i]=G.arc[0][i];  adjvex[i]=0;
    }
    lowcost[0]=0;
    for(i=1;i<G.vertexNum;i+++){
        k=MinEdge(lowcost,G.vertexNum)
        cout<<K<<adjvex[k]<<lowcost[k];
        lowcost[k]=0;
    for(j=1;j<G.vertexNum;j++)
        if((G.arc[k][j]<lowcost[j]){
              lowcost[j]=G.arc[k][j];
              arcvex[j]=k;
        }
    }
}

克鲁斯卡尔(Kruskal)算法

基本思想:

  1. 设无向连通网为G=(V, E),令G的最小生成树为T=(U, TE),其初态为U=V,TE={ },
  2. 然后,按照边的权值由小到大的顺序,考察G的边集E中的各条边。
    2.1 若被考察的边的两个顶点属于T的两个不同的连通分量,则将此边作为最小生成树的边加入到T中,同时把两个连通分量连接为一个连通分量;
    2.2 若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,
  3. 如此下去,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。

伪代码:

  1. 初始化:U=V; TE={ };
  2. 循环直到T中的连通分量个数为1
    2.1 在E中寻找最短边(u,v);
    2.2 如果顶点u、v位于T的两个不同连通分量,则
    2.2.1 将边(u,v)并入TE;
    2.2.2 将这两个连通分量合并为一个;
    2.3 在E中标记边(u,v),使得(u,v)不参加后续最短边的选取;

Kruskal算法实现中的三个关键问题

  1. 图的存储结构
    采用边集数组存储图。
  2. 如何判断一条边所依附的两个顶点在同一个连通分两中(并查集)
    定义Parent[i]数组。数组分量的值表示顶点i的双亲节点(初值为-1;)
    当一条边(u,v)的两个顶点的根结不同时,这两个结点属于不同的连通分量(利用parent 数组查找一棵树的根节点。当一个结点n的parent==-1,树的根节点即为n)
  3. 如何将一条边所依附的两个顶点合并到同一个连通分量中
    要进行联通分量的合并 ,其中一个顶点所在的树的根节点为vex1,另一个顶点所在的树的根节点为vex2,则:parent[vex2]=vex1;
int main(){
    int arcNum, int vertexNum;
    EdgeNode *edge;
    int *parent;

    cout<<"please input the number of vertexNum:"; cin>>vertexNum;
    cout<<"please input the number of edges:";	cin>>arcNum;
    edge=new EdgeNode[arcNum];	parent=new int[vertexNum];
    for(int i=0;i<arcNum;i++)	{
 	cout<<"Please input the edges:";
	cin>>edge[i].from>>edge[i].to>>edge[i].weight;
    }
    sort(edges, G); //对边集数组进行堆排序,时间复杂性为O(eloge)
    for (i=0;i<vertexNum;i++)
	parent[i]=-1;  //每个节点分属于不同的集合

    int k=0,begin,end,count=0;
    cout<<"next is the MST :"<<endl;
    for (k=0;k<arcNum;k++)	{
         begin=edge[k].from;	end=edge[k].to;	
         int m,n;
        m=Find(parent,begin);	n=Find(parent,end);
        if(m!=n)	{
            cout<<begin<<","<<end<<","<<edge[k].weight<<endl;
            parent[n]=m;	
            count++;
            if(count==vertexNum-1)	break;
       }
   }
   return 0;

find函数:

int Find(int *parent, int node)
{
	int f;
	f=node;
	while(parent[f]>-1)
		f=parent[f];
	return f;
}
最短路径问题

问题描述:给定带权有向图G=(V, E)和源点v∈V,求从v到G中其余各顶点的最短路径。

Dijkstra算法
基本思想:

  1. 设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,
  2. 对vi∈V-S,假设从源点v到vi的有向边为最短路径(从v到其余顶点的最短路径的初值)。
  3. 以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。
  4. 重复上述过程,直到集合V中全部顶点加入到集合S中。

数据结构 :
图的存储结构:邻接矩阵存储结构

数组dist[n]:每个分量dist[i]表示当前所找到的从始点v到终点vi的最短路径的长度。初态为:
若从v到vi有弧,则dist[i]为弧上权值;否则置dist[i]为∞。

数组path[n]:path[i]是一个字符串,表示当前所找到的从始点v到终点vi的最短路径。初态为:若从v到vi有弧,则path[i]为vvi;否则置path[i]空串。

数组s[n]:存放源点和已经找到最短路径的终点,其初态为只有一个源点v。

const int MAX=1000;
void  Dijkstra(MGraph g, int v){
       for ( i =0; i<g.vexnum ; i++){
	 dist[i]=g.arcs[v][i];  
               if ( dist[i]!= MAX) 
                      path [i]=g.vertex[v]+g.vertex[i];
               else
                      path[i]=“”;
       }
       S[0]=g.vertex[v]; 
       num=1; 
       While (num<g.vextexNum){
    k=0;
    for(i=0;i<G.vertexNum;i++)
           if((dist[i]<dist[k])   k=i
    cout<<dist[k]<<path[k];
    s[num++]=G.vertex[k];                
    for(i=0;i<G.vertexNum;i++)
       if(dist[k]+g.arc[k][i]<dist[i] {
		     dist[i]=dist[k]+g.arc[k][i];
             path[i]=path[k]+g.vertex[i];
     }
}
 

Floyd算法

基本思想:
设图g用邻接矩阵法表示,
求图g中任意一对顶点vi、 vj间的最短路径。
(-1) 将vi到vj 的最短的路径长度初始化为(vi,vj), 然后进行如下n次比较和修正:
(0) 在vi、vj间加入顶点v0,比较(vi, v0, vj)和(vi, vj)的路径的长度,取其中较短的路径作为vi到vj的且中间顶点号不大于0的最短路径。
(1) 在vi、vj间加入顶点v1,
得(vi, …,v1)和(v1, …,vj),其中:
(vi, …, v1)是vi到v1 的且中间顶点号不大于0的最短路径,
(v1, …, vj) 是v1到vj 的且中间顶点号不大于0的最短路径,
这两条路径在上一步中已求出。
将(vi, …, v1, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于0的最短路径比较,取其中较短的路径作为vi到vj 的且中间顶点号不大于1的最短路径。
(2)在vi、vj间加入顶点v2,得
(vi, …, v2)和(v2, …, vj), 其中:
(vi, …, v2)是vi到v2 的且中间顶点号不大于1的最短路径,
(v2, …, vj) 是v2到vj 的且中间顶点号不大于1的最短路径,
这两条路径在上一步中已求出。
将(vi, …, v2, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于1的最短路径比较, 取其中较短的路径作为vi到vj 的且中间顶点号不大于2的最短路径。
……

数据结构
图的存储结构:带权的邻接矩阵存储结构
数组dist[n][n]:存放在迭代过程中求得的最短路径长度。
数组path[n][n]:
存放从vi到vj的最短路径,初始为path[i][j]=“vivj”。

void Floyd(MGraph G)
{
    for (i=0; i<G.vertexNum; i++)        
       for (j=0; j<G.vertexNum; j++)
       {
          dist[i][j]=G.arc[i][j];
          if (dist[i][j]!=) 
               path[i][j]=G.vertex[i]+G.vertex[j];
          else path[i][j]=""; 
       }
       for (k=0; k<G.vertexNum; k++)         
        for (i=0; i<G.vertexNum; i++)       
           for (j=0; j<G.vertexNum; j++)
               if (dist[i][k]+dist[k][j]<dist[i][j]) {
                    dist[i][j]=dist[i][k]+dist[k][j];
                    path[i][j]=path[i][k]+path[k][j];
              }
}
有向无环图及其应用

AOV网
AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,称这样的有向图为顶点表示活动的网,简称AOV网。

AOV网与拓扑排序
拓扑序列:
设G=(V,E)是一个具有n个顶点的有向图,V中的顶点序列v1, v2, …, vn称为一个拓扑序列,当且仅当满足下列条件:若从顶点vi到vj有一条路径,则在顶点的拓扑序列中顶点vi必在顶点vj之前。
拓扑排序:对一个有向图构造拓扑序列的过程称为拓扑排序 。

拓扑序列使得AOV网中所有应存在的前驱和后继关系都能得到满足。

基本思想
⑴ 从AOV网中选择一个没有前驱的顶点并且输出;
⑵ 从AOV网中删去该顶点,并且删去所有以该顶点为尾的弧;
⑶ 重复上述两步,直到全部顶点都被输出,或AOV网中不存在没有前驱的顶点。

数据结构
图的存储结构:采用邻接表存储 ,在顶点表中增加一个入度域in。
栈S:存储所有无前驱的顶点(入度为零的顶点)。
(1)找G中无前驱的顶点
查找indegree [i]为零的顶点vi;
(2)修改邻接于顶点i的顶点的入度(删除以i为起点的所有弧)
对链在顶点i后面的所有邻接顶点k,将对应的indegree[k] 减1。
为了避免重复检测入度为零的顶点,可以再设置一个辅助栈,若某一顶点的入度减为0,则将它入栈。每当输出某一入度为0的顶点时,便将它从栈中删除。

伪代码

  1. 栈S初始化;累加器count初始化;
  2. 扫描顶点表,将没有前驱的顶点压栈;
  3. 当栈S非空时循环
    3.1 vj=退出栈顶元素;输出vj;累加器加1;
    3.2 将顶点vj的各个邻接点的入度减1;
    3.3 将新的入度为0的顶点入栈;
  4. if (count<vertexNum) 输出有回路信息;
void TOpSort(){
int  top=-1, count=0;
for(int i=0;i<vertexnum;i++)
     if(adjlist[i].in==0) s[++top]=i;
while(top!=-1){
    j=s[top--]; cout <<adjlist[j].vertext;   count++;
    p=adjlist[j].firstedge;
    while(p!=NULL){
          k=p->adjvex; adjlist[k].in--;
         if(adjlist[k].in==0) s[top++]=k;
         p=p->next;
      } 
}
If (count<vertexNum) cout<<“有回路”;
}

AOE网
在一个表示工程的带权有向图中,
用顶点表示事件,
用有向边表示活动,
边上的权值表示活动的持续时间,
称这样的有向图叫做边表示活动的网,简称AOE网。
AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。

AOE网的性质:
⑴ 只有在某顶点所代表的事件发生后,从该顶点出发的各活动才能开始;
⑵ 只有在进入某顶点的各活动都结束,该顶点所代表的事件才能发生。

关键路径:在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径称为关键路径。
关键活动:关键路径上的活动称为关键活动。
要找出关键路径,必须找出关键活动, 即不按期完成就会影响整个工程完成的活动。
首先计算以下与关键活动有关的量:
⑴ 事件的最早发生时间ve[k]
⑵ 事件的最迟发生时间vl[k]
⑶ 活动的最早开始时间e[i]
⑷ 活动的最晚开始时间l[i]
最后计算各个活动的时间余量 l[k] - e[k],时间余量为0者即为关键活动。

struct Edge{
	int from;
	int to;
	int e;
	int l;
};

class Grap{
	int vertexnum,e;
	int **adjlist;   //邻接矩阵
	int start,end;
	Edge *edge;  //边集数组
public:
	Grap(int n,int e);
	int  path();
};

⑴ 事件的最早发生时间ve[k]
ve[k]是指从始点开始到顶点vk的最大路径长度。这个长度决定了所有从顶点vk发出的活动能够开工的最早时间。

ve[1]=0
ve[k]=max{ve[j]+len<vj, vk>} (<vj, vk>∈p[k])
p[k]表示所有到达vk的有向边的集合

ve[k]的计算

q.push(0);//源点事件入队
	for(j=0;j<vertexnum;j++)	{  //初始化每个事件最早发生时间
		ve[j]=0;	visit[j]=0;	}
	visit[0]=1;	
     while(!q.empty())	{		
		i=q.front();       //利用标准模板库中的队列实现
		q.pop();
		for(j=0;j<vertexnum;j++){//计算i的邻接点的ve
			if(adjlist[i][j]!=9999 && ve[i]+adjlist[i][j]>ve[j] ){
				ve[j]=ve[i]+adjlist[i][j];
				if(!visit[j])   //如果j没有被访问过,顶点j入队
					q.push(j);
				visit[j]=1;
			}
		}
	}

⑵ 事件的最迟发生时间vl[k]
vl[k]是指在不推迟整个工期的前提下,事件vk允许的最晚发生时间。

vl[n]=ve[n]
vl[k]=min{vl[j]-len<vk , vj>}(<vk, vj>∈s[k])
s[k]为所有从vk发出的有向边的集合

vl[k]的计算

q.push(vertexnum-1);
	for(j=0;j<vertexnum;j++)	{
		vl[j]=ve[vertexnum-1];	visit[j]=0;	}
    while(!q.empty())	{
		i=q.front();
		q.pop();
		for(j=0;j<vertexnum;j++)	{
			if(adjlist[j][i]!=9999 && vl[i]-adjlist[j][i]<vl[j] ){
				vl[j]=vl[i]-adjlist[j][i];
				if(!visit[j])
					q.push(j);
				visit[j]=1;
			}
		}
	}

⑶ 活动的最早开始时间e[i]
若活动ai是由弧<vk , vj>表示,则活动ai的最早开始时间应等于事件vk的最早发生时间。因此,有:
e[i]=ve[k]
⑷ 活动的最晚开始时间l[i]
活动ai的最晚开始时间是指,在不推迟整个工期的前提下, ai必须开始的最晚时间。
若ai由弧<vk,vj>表示,
则ai的最晚开始时间要保证事件vj的最迟发生时间不拖后。
因此,有:
l[i]=vl[j]-len<vk, vj>

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值