Job Seekers

某美资互联网公司(清华北大团队)

公司性质:外资  公司行业:互联网  公司规模:50~100人

浏览数:87收藏核心开发- C++/Python (Sr.) Engineer

  • 工作地点:北京-东城
  • 工作年限:1年
  • 学历要求:研究生
  • 招聘分类:C++程序员
  • 工资范围:13000元 ~ 18000元
  • 福利待遇:年底奖金+期权+免费零食饮料+中餐+各种报销
  • 招聘人数:若干
  • 发布日期:2012/10/19
  • 截止日期:2012/11/30
职位要求

期望您是知名高校硕士学历,计算机相关专业毕业,1年+经验。
俩team的职位
(Sr.)Software Engineer—AF team 
Location: Beijing, China 

Job Description: 
 Work closely with Eng/PM team to build, optimize forecasting system 
 Work closely with Ops team to monitor, maintain and trouble shoot 
production system 
 Investigate and trouble shoot client facing problems 

Qualification: 
 Open minded, self motivated and good learning ability 
 Team player with good communication skills 
 Solid knowledge and hands on experience on C/C++ 
 Good oral/written English 
 Knowledge on Linux, MySQL and Python is preferred 
 Knowledge on machine learning and pattern recognition is a good plus 

Job responsibility and compensation will be commensurate with experiences.


(Sr.)Software Engineer—RPM team 
Location: Beijing, China 

Job Description: 
-Work closely with Eng/PM team to design, build RPM system - the most 
advanced industrial financial system. 
-Work closely with Ops team to operate system, including monitoring, 
maintaining and troubleshooting. 
-Work with sales engineers, account managers for client implementation, 
integration. 

Qualification: 
-Open minded, self-motivated and good learning ability. 
-Team player with good communication skills. 
-Solid knowledge and hands on experience on C/C++. 
-Knowledge on Linux, MySQL and Python is preferred. 
-Knowledge on handling complex business logic is preferred. 
-Knowledge on managing big data is a good plus. 
-Master’s degree in Computer Science or related field. 

Job responsibility and compensation will be commensurate with experiences.

联系方式
(方向性)

内容概要:本文详细介绍了一个基于Python实现的锂电池剩余寿命(RUL)预测项目,采用Transformer-LSTM混合深度学习模型,结合GUI界面实现智能化预测与可视化分析。项目涵盖从数据生成、特征工程、模型构建(Transformer自注意力机制与LSTM时序建模融合)、训练优化、性能评估到实际部署的全流程。通过滑动窗口采样、数据归一化、多维度评估指标(MSE、MAE、R²、RMSE、MAPE)及残差分析,确保模型高精度与鲁棒性。同时集成注意力权重与LSTM隐状态可视化功能,提升模型可解释性,并设计了完整的GUI交互系统,支持数据加载、模型热插拔推理与预测结果动态展示。; 适合人群:具备一定Python编程基础和深度学习知识,熟悉PyTorch框架的数据科学从业者、研究生及从事新能源、智能制造、电池管理系统开发的工程师。; 使用场景及目标:①应用于新能源汽车、储能电站、消费电子等领域的电池健康管理;②实现锂电池剩余寿命的高精度动态预测,支持智能运维与故障预警;③为科研人员提供可复现、可扩展的深度学习时序建模实例,推动电池寿命预测技术的工程化落地。; 阅读建议:建议读者结合代码与文档逐步实践,重点关注数据预处理、模型结构设计与GUI集成部分,尝试在本地环境中运行并调试程序,深入理解Transformer与LSTM协同工作机制,同时可扩展多模态输入或轻量化部署以适应更多应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值