问题描述
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
输入
多组数据
第一行 物品件数n 组数k 背包容量v
第二行 k个数据 表示第j组有多少个物品
接下来每组的物品的费用c[i] w[i]
输出
最大的价值总和
样例输入
1
10 3 10
3 3 4
1 2
2 3
3 4
4 5
5 6
7 8
8 9
1 2
2 3
3 4
样例输出
13
源代码如下:
#include<stdio.h>
#define M 1000
int dp[M],c[M][M],w[M][M],a[M];
int max(int a,int b)
{
if(a>b)
{
return a;
}
else
{
return b;
}
}
int main()
{
int n,v,k,t,i,j,V;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d",&n,&k,&V);
for(i=1;i<=k;i++)
{
scanf("%d",&a[i]);//输入每组的个数存入数组中。
}
for(i=1;i<=k;i++)
{
for(j=1;j<=a[i];j++)
{
scanf("%d %d",&c[i][j],&w[i][j]);//将每组的大小及价值分别存入二维数组中。
}
}
for(i=1;i<=k;i++)
{
for(v=V;v>=0;v--)
{
for(j=1;j<=a[i];j++)
{
if(v-c[i][j]>=0)
{
dp[v]=max(dp[v],dp[v-c[i][j]]+w[i][j]);
}
// printf("dp[%d]=%d\n",v,dp[v]);
}
}
}
printf("%d\n",dp[V]);
}
}
#define M 1000
int dp[M],c[M][M],w[M][M],a[M];
int max(int a,int b)
{
if(a>b)
{
return a;
}
else
{
return b;
}
}
int main()
{
int n,v,k,t,i,j,V;
scanf("%d",&t);
while(t--)
{
scanf("%d %d %d",&n,&k,&V);
for(i=1;i<=k;i++)
{
scanf("%d",&a[i]);//输入每组的个数存入数组中。
}
for(i=1;i<=k;i++)
{
for(j=1;j<=a[i];j++)
{
scanf("%d %d",&c[i][j],&w[i][j]);//将每组的大小及价值分别存入二维数组中。
}
}
for(i=1;i<=k;i++)
{
for(v=V;v>=0;v--)
{
for(j=1;j<=a[i];j++)
{
if(v-c[i][j]>=0)
{
dp[v]=max(dp[v],dp[v-c[i][j]]+w[i][j]);
}
// printf("dp[%d]=%d\n",v,dp[v]);
}
}
}
printf("%d\n",dp[V]);
}
}