caffe 源码学习(4)_反向传播权重更新

还是以mnist手写字符,lenet5为例。
这里写图片描述
如上图所示,左边为9个layer层,右边为每层的top blob 的输出(featrue map)的维度。

  • 那么问题来了,训练的参数 wijbi 存在哪些变量里呢?
    1)有需要用BP算法进行训练参数的层(layer),内部都会有一个成员变量layer::blobs_,其中blobs_[0]存放 wij Δwij ,blobs_[1]存放 biΔbi .
    2) 网络层内部成员变量 Net::blobs_内部存放数据及 δ 值。

      在lenet5网络中,只有两个卷积层(conv1,conv2)和两个全链接层(ip1,ip2)内部有需要训练的参数。因此lenet5网络需要8个blobs_存放训练参数,Net内部变量 net::learnable_params_与此8个blobs_共享内存。且,各层的layer::blobs_变量在layer::setup()中分配内存和初始化,在layer::Backward_cpu()中计算 ΔwijΔbi ,后续准备编写自己网络的童鞋需要重写此函数。最后调用Net::update()函数,更新 wij
      以全链接层为例:

///ip层 blobs_ 开辟内存及初始化
template <typename Dtype>
void InnerProductLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {
  const int num_output = this->layer_param_.inner_product_param().num_output();
  bias_term_ = this->layer_param_.inner_product_param().bias_term();
  transpose_ = this->layer_param_.inner_product_param().transpose();
  N_ = num_output;
  const int axis = bottom[0]->CanonicalAxisIndex(
      this->layer_param_.inner_product_param().axis());
  // Dimensions starting from "axis" are "flattened" into a single
  // length K_ vector. For example, if bottom[0]'s shape is (N, C, H, W),
  // and axis == 1, N inner products with dimension CHW are performed.
  K_ = bottom[0]->count(axis);
  // Check if we need to set up the weights
  if (this->blobs_.size() > 0) {
    LOG(INFO) << "Skipping parameter initialization";
  } else {
    if (bias_term_) {
      this->blobs_.resize(2);
    } else {
      this->blobs_.resize(1);
    }
    // Initialize the weights
    vector<int> weight_shape(2);
    if (transpose_) {
      weight_shape[0] = K_;
      weight_shape[1] = N_;
    } else {
      weight_shape[0] = N_;
      weight_shape[1] = K_;
    }
    this->blobs_[0].reset(new Blob<Dtype>(weight_shape));
    // fill the weights
    shared_ptr<Filler<Dtype> > weight_filler(GetFiller<Dtype>(   权重w初始化
        this->layer_param_.inner_product_param().weight_filler()));
    weight_filler->Fill(this->blobs_[0].get());
    // If necessary, intiialize and fill the bias term
    if (bias_term_) {
      vector<int> bias_shape(1, N_);
      this->blobs_[1].reset(new Blob<Dtype>(bias_shape)); //偏置初始化
      shared_ptr<Filler<Dtype> > bias_filler(GetFiller<Dtype>(
          this->layer_param_.inner_product_param().bias_filler()));
      bias_filler->Fill(this->blobs_[1].get());
    }
  }  // parameter initialization
  this->param_propagate_down_.resize(this->blobs_.size(), true);
}

权重变化量计算:

template <typename Dtype>
void InnerProductLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (this->param_propagate_down_[0]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    const Dtype* bottom_data = bottom[0]->cpu_data();
    // Gradient with respect to weight
    if (transpose_) {
      caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans,
          K_, N_, M_,
          (Dtype)1., bottom_data, top_diff,
          (Dtype)1., this->blobs_[0]->mutable_cpu_diff());
    } else {
      caffe_cpu_gemm<Dtype>(CblasTrans, CblasNoTrans,
          N_, K_, M_,
          (Dtype)1., top_diff, bottom_data,
          (Dtype)1., this->blobs_[0]->mutable_cpu_diff());  //计算本层参数更新量 △W
    }
  }
  if (bias_term_ && this->param_propagate_down_[1]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    // Gradient with respect to bias
    caffe_cpu_gemv<Dtype>(CblasTrans, M_, N_, (Dtype)1., top_diff,
        bias_multiplier_.cpu_data(), (Dtype)1.,
        this->blobs_[1]->mutable_cpu_diff());           //计算本层参数更新量 △b
  }
  if (propagate_down[0]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    // Gradient with respect to bottom data
    if (transpose_) {
      caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasTrans,
          M_, K_, N_,
          (Dtype)1., top_diff, this->blobs_[0]->cpu_data(),
          (Dtype)0., bottom[0]->mutable_cpu_diff());
    } else {
      caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans,   /// 计算下一层的deta
          M_, K_, N_,
          (Dtype)1., top_diff, this->blobs_[0]->cpu_data(),
          (Dtype)0., bottom[0]->mutable_cpu_diff());
    }
  }
}

总的训练流程在Solver::Step()函数实现中:

template <typename Dtype>
void Solver<Dtype>::Step(int iters) {
  const int start_iter = iter_;
  const int stop_iter = iter_ + iters;
  int average_loss = this->param_.average_loss();
  losses_.clear();
  smoothed_loss_ = 0;

  while (iter_ < stop_iter) {  //以一个batch为一个周期
    // zero-init the params
    net_->ClearParamDiffs();   /////将Net 的成员变量param_ 中的diff空间初始化为0 
    if (param_.test_interval() && iter_ % param_.test_interval() == 0
        && (iter_ > 0 || param_.test_initialization())
        && Caffe::root_solver()) {
      TestAll();
      if (requested_early_exit_) {
        // Break out of the while loop because stop was requested while testing.
        break;
      }
    }

    for (int i = 0; i < callbacks_.size(); ++i) {
      callbacks_[i]->on_start();
    }
    const bool display = param_.display() && iter_ % param_.display() == 0;
    net_->set_debug_info(display && param_.debug_info());
    // accumulate the loss and gradient
    Dtype loss = 0;
    for (int i = 0; i < param_.iter_size(); ++i) {
      loss += net_->ForwardBackward(); /////关键。 前向运算、反向运算
    }
    loss /= param_.iter_size();
    // average the loss across iterations for smoothed reporting
    UpdateSmoothedLoss(loss, start_iter, average_loss);
    if (display) {
      LOG_IF(INFO, Caffe::root_solver()) << "Iteration " << iter_   //////////////// Iteration, loss=
          << ", loss = " << smoothed_loss_;
      const vector<Blob<Dtype>*>& result = net_->output_blobs();
      int score_index = 0;
      for (int j = 0; j < result.size(); ++j) {
        const Dtype* result_vec = result[j]->cpu_data();
        const string& output_name =
            net_->blob_names()[net_->output_blob_indices()[j]];
        const Dtype loss_weight =
            net_->blob_loss_weights()[net_->output_blob_indices()[j]];
        for (int k = 0; k < result[j]->count(); ++k) {      //////Train net out///////////////
          ostringstream loss_msg_stream;
          if (loss_weight) {
            loss_msg_stream << " (* " << loss_weight
                            << " = " << loss_weight * result_vec[k] << " loss)";
          }
          LOG_IF(INFO, Caffe::root_solver()) << "    Train net output #"
              << score_index++ << ": " << output_name << " = "
              << result_vec[k] << loss_msg_stream.str();
        }
      }
    }//if(display)
    for (int i = 0; i < callbacks_.size(); ++i) {
      callbacks_[i]->on_gradients_ready();
    }
    ApplyUpdate();  /////////////// 反向运算完成,统一更新权重值w

    // Increment the internal iter_ counter -- its value should always indicate
    // the number of times the weights have been updated.
    ++iter_;

    SolverAction::Enum request = GetRequestedAction();

    // Save a snapshot if needed.
    if ((param_.snapshot()
         && iter_ % param_.snapshot() == 0
         && Caffe::root_solver()) ||
         (request == SolverAction::SNAPSHOT)) {
      Snapshot();
    }
    if (SolverAction::STOP == request) {
      requested_early_exit_ = true;
      // Break out of training loop.
      break;
    }// if()
  }// end while
} // end step()
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值