机器学习实战项目里面 常出现概念知识点总结(持续更新)

本文介绍了使用pandas和numpy进行数据处理时的关键概念,包括如何利用axis参数操作数据帧的行与列,以及通过value_counts函数统计各数据项的出现频率。此外,还讨论了在sklearn中如何运用train_test_split函数对数据集进行训练集和测试集的划分,为模型评估提供了重要的基础。
摘要由CSDN通过智能技术生成

如果不总结,就很容易忘记。常用的概念知识点记录下来,当成索引,常看常新。

pandas&numpy

  1. 在处理数据时候常用到 axis=1或者axis=0  #axis=1 表示列;0表示行
  2. 在处理样本时候,常用召回率来作为模型评估
  3. 在统统计数据集里面数据出现的频率,常用value_counts.——value_counts计算DataFrame,Series的数据频率

Sklearn

  1. sklearn里面testing和training数据分类库 train_test_split 用法——sklearn.model_selection.train_test_split 用法



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值