自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1077)
  • 收藏
  • 关注

原创 企业怎样高效使用大模型 :全栈智能体式AI是企业级AI的主要形态

现阶段企业如何充分利用AI大模型?主打流程全局自动化的全栈智能体式AI将帮助企业实现以AI为核心的整个业务流程的“自动化”(Automation)和“自主化”(Autonomous),同时支持人和AI的协同,系统性地提升企业整体效能。

2025-06-13 11:10:53 229

原创 【一文看懂】大白话解释大模型的技术原理,为什么它那么聪明?小白必看!!

近年来,大模型技术逐渐走进我们的生活。无论是在科技新闻里,还是在日常聊天中,总能听到它的名字。它不仅能写文章、画图、翻译语言,还能帮医生诊断疾病,甚至完成一些我们以前觉得只有人类才能做的事情。“大模型”到底是什么?为什么它这么厉害?它是怎么做到的?这篇文章就用大白话,带您了解大模型的基本概念、工作原理、应用场景,以及它面临的挑战。

2025-06-13 10:34:21 324

原创 大模型下半场,阶跃凭什么领跑多模态之战?看完这篇你就知道了!!

DeepSeek “掀桌”三个月后,国内大模型的竞争格局大致可划分为三大阵营:一是以大厂为代表的资源派,他们手握充足资本,能在基础模型和落地应用上持续烧钱;二是以 DeepSeek 为代表的技术派,专注于基座模型的突破和投入,在推理、数理或多模态等单点技术上见长;三是以阶跃星辰、智谱为代表的国家队,获得地方政府的大力支持,能够潜心做技术积累以追求全面发展。

2025-06-12 14:05:21 419

原创 RAG新选择!阿里开源向量大模型Qwen-Embedding和重排序大模型,评分超谷歌向量模型,检索排行榜第一!完全免费开源。

阿里巴巴Qwen团队发布了全新的Qwen3 Embedding系列模型,这是一套基于Qwen3基础模型构建的专用文本向量与重排(Reranking)模型。该系列模型凭借Qwen3强大的多语言理解能力,在多项文本向量与重排任务的Benchmark上达到了SOTA水平,其中8B尺寸的向量模型在MTEB多语言排行榜上排名第一。Qwen3 Reranker模型在多个评测基准上同样大幅超越了现有的主流开源竞品。

2025-06-12 11:10:01 424

原创 别被炒作迷惑!吴恩达告诉你AI Agent智能体的真相与误区

在AI领域,炒作往往走在实践的前面,今年热议的AI Agent(智能体)就是这样一个充满误解与过度承诺的热门概念。吴恩达(Andrew Ng)无疑是人工智能领域最具影响力的人物之一。作为斯坦福大学教授、Coursera联合创始人、百度前首席科学家、AI Fund创始人,他不仅推动了深度学习的普及,还培养了一代AI人才。另一边,LangChain作为当前最流行的大语言模型应用开发框架,已成为构建AI Agent的必备工具,其创始人Harrison Chase被誉为新一代AI创新者。这两位AI领域的重量级人物在

2025-06-11 12:01:06 858

原创 【喂饭教程】手把手教你用LLaMA-Factory微调Qwen3大模型,全程干货,小白也能轻松学会!!

【喂饭教程】手把手教你用LLaMA-Factory微调Qwen3大模型,全程干货,小白也能轻松学会!!

2025-06-11 11:19:08 609

原创 Qwen3开源最新Embedding模型,一文详解文本嵌入与重排序!!

Qwen3-Embedding 是构建于 Qwen3 基础模型上的新一代文本嵌入与重排序模型系列,显著提升了多语言理解、代码检索与复杂指令任务中的表现。该系列模型覆盖三个参数规模(0.6B、4B、8B),并通过多阶段训练策略,结合大规模弱监督合成数据、有监督微调与模型融合,最终在多个基准测试中取得了当前最优性能。

2025-06-10 11:53:30 759

原创 你知道推理模型(Reasoning Model)与普通 LLM 有何区别?一文给你讲清!!

市场涌现了一批推理模型,例如热度颇高的 DeepSeek R1、Gemini 2.0 Flash Thinking、Gemini 2.5 Pro 以及 Claude 3.7 Sonnet Thinking 等。那么,它们和传统 LLM 到底有什么具体区别呢?

2025-06-10 10:49:11 532

原创 【AI大模型】RAG越来越不准?你可能忽略了“元数据”的力量

你是否也有这样的困扰?问大模型一个很具体的问题:“请告诉我A软件的安装方法。”结果它却信誓旦旦地告诉了你B软件的安装步骤。在这个过程中,你可能已经花了大量时间解析和清洗上千份文档,接入RAG,但结果仍然不理想。为什么会这样?其中一个很重要的原因是,我们花了很多时间构建知识库,却忽略了一个看似不起眼的部分 —— 元数据。

2025-06-09 11:51:38 798

原创 DeepSeek R2要来了!大摩率先曝光,参数翻倍、推理成本暴降88%

R2模型的参数量从R1的6710亿直接飙升到了1.2万亿,这是什么概念?整整翻了近一倍!更厉害的是,活跃参数也从原来的370亿涨到了780亿。这意味着什么?简单来说,就是R2每次"思考"的时候,会调用更多的"脑细胞"来处理问题。就像一个人原本只用了30%的大脑,现在可以用到60%一样,思考的深度和质量自然会有质的飞跃。

2025-06-09 10:53:21 844

原创 AI大模型面经——大模型训练中超参数的设置与训练数据偏好

本篇主要从训练设置(batch size及优化器设置)、训练数据选择两大角度来具体谈谈经验,下面是一个问题的快捷目录。1. 训练大模型时,batch size如何设置比较合理,可以讲讲自己的思考2. 如果batch size设置过小或过大分别会怎样?3. 微调时优化器怎么设置好?4. 预训练和微调时选择的训练数据分别有什么偏好,有没有一些建议?

2025-06-08 08:00:00 971

原创 【AI大模型+Coze】只需三步,定制属于自己的AI旅游计划:Coze工作流与大模型的完美结合

亲们,准备好告别繁琐的旅行规划了吗?试试coze,它能帮你量身定制专属的旅行计划,让你的旅程更加轻松愉快!不想漏掉重要景点,又不知道怎么安排更合理的,请把想去的城市告诉它,它能够为你提供各景点详尽信息,并根据你的实际需求,定制旅行计划。那么,怎么才能让AI给我们提供一份完美的旅行计划呢?

2025-06-07 15:01:56 902

原创 关于人工智能应用场景中前期数据处理的业务场景和技术分析——包括结构化数据和非结构化数据

“ 文档处理是人工智能应用领域中的重要环节,其业务需求复杂,技术实现难度高;因此,怎么处理复杂文档是每个技术人员都需要考虑的问题。”文档处理在当前人工智能行业下是一个非常基础也非常重要的工作,不论是模型的训练和微调,还是以RAG检索增强,亦或者是在传统的搜索引擎(包括百度,谷歌这种搜索引擎;以及电商等内部平台的搜索需求)中都是必不可少的一个重要环节。

2025-06-07 11:28:45 686

原创 首次全面复盘AI Agents记忆系统:3大类,6种操作!零基础小白看到就是赚到,建议收藏!!

记忆是AI系统的基本组成部分,尤其是对于基于LLMs的Agents。首次将记忆表示分为三类:参数化记忆、上下文结构化记忆和上下文非结构化记忆,并介绍了六种基本的记忆操作:巩固、更新、索引、遗忘、检索和压缩。盘点了几十种记忆框架、产品、应用!

2025-06-06 15:17:49 736

原创 给MCP加上RAG,Agent准确率起飞?看完这一篇你就知道了!!

首先,我们需要知道的是,大模型的输入只有prompt。所以,无论是function call,又或者是MCP Server。他们做的都是定义了一个工具描述信息,最终都会被以某种方式填充到prompt里。那为什么有了function call还要有MCP协议呢,问题出在这个工具描述定义这里,每家大模型API都是让你传一个Json进某一个指定字段。但是这个Json定义的格式,它不一样,这就带来了一些迁移适配成本问题。

2025-06-06 11:48:21 628

原创 Dify “Agent节点” 让工作流学会 “自主推理”,小白零基础收藏这一篇就够了!!

在以往常见的Dify工作流里面,工具的调用逻辑是预先编排好的,不够灵活,无法适应复杂场景。随着大型语言模型(LLM)推理能力的不断增强,Dify推出Agent节点,利用大模型自主调 用工具。通过集成不同的Agent推理策略,使LLM能在运行时动态选择并执行工具,增强工具调用灵活性。

2025-06-05 14:34:06 806

原创 AI+数据智能体的三大支点:数据治理、知识库和大模型

调研显示:新人独立工作需3个月,专家30%工作时间在重复回答同样问题。这种重复造轮子的模式,每年浪费企业数百万成本。产品经理疲惫地盯着屏幕:"我们已经生成了20页分析报告,老板看完只问了一句’所以我们应该怎么做?'"决策低效是第三大内耗陷阱。拥有再多数据仪表盘,没有转化为决策的能力,企业依然在迷雾中前行。核心问题不是企业缺数据,而是缺乏将数据转化为知识,再转化为决策的能力。这正是"智能决策闭环"的关键。

2025-06-05 11:24:25 728

原创 手把手教你用LLaMA-Factory微调Qwen3大模型,全程干货,小白也能轻松学会!!

手把手教你用LLaMA-Factory微调Qwen3大模型,全程干货,小白也能轻松学会!!

2025-06-04 11:57:29 955

原创 ArXiv MCP保姆级教程|DeepSeek变身论文学习神器,让AI自动搜论文、阅读、下载,实现论文自由

说到科研学习,ArXiv是必不可少的工具,一个开放获取的学术预印本平台,主要用于物理、数学、计算机科学等领域的学者分享和查阅未经同行评审的研究论文。有大神把它封装成了MCP工具,可以让AI直接调用。

2025-06-04 11:10:08 717

原创 深度讲解AI大模型原理,它到底是如何工作的,看完这篇你就懂了!!

现在很多朋友都在研究AI大模型;对各个公司的大模型更是数如家珍。“chatgpt、Claude、Gemini、Llama3、文心一言、千问…”国外的、国内的、开源的、不开源的;只要出来一个大模型,就要注册,试一试效果。但我想问的是:你真正了解它们是如何工作的吗?

2025-06-03 18:38:55 641

原创 【AI大模型应用】Agentic GraphRAG:融合知识图谱与智能体的合同解析方案

在每一个企业中,法律合同都是定义各方之间关系、义务和责任的基础性文件。无论是合伙协议、保密协议(NDA)还是供应商合同,这些文件通常包含关键信息,这些信息驱动决策、风险管理以及合规性。然而,理解和从这些合同中提取见解可能复杂且耗时。在本文中,我们将探讨如何通过实施基于 Agentic GraphRAG 的端到端解决方案,来简化理解和处理法律合同的过程。我认为 GraphRAG 是一个总称,指任何从存储在 知识图谱中的信息中检索或推理由的方法,这使得响应更加结构化和上下文感知。通过将法律合同结构化为N

2025-06-03 11:55:47 714

原创 【AI大模型】不知道部署哪个版本?一文看懂Qwen3本地部署的配置要求,收藏这一篇就够了!!

本次Qwen3系列开源模型一共发布了8个不同尺寸,尺寸越大,显存占用越高。8个模型中有6个Dense(密集)模型,2个MoE(混合专家)模型。密集模型在推理过程中会激活所有参数,而 MoE 模型则采用稀疏激活策略,每次前向传递只激活一部分专家参数,在有限的计算预算下性能更高。

2025-06-02 08:00:00 736

原创 Dify+数据库+ECharts打造数据可视化图表,让数据自己说话!

今天分享一下如何利用Dify平台,结合强大的Echarts图表库,轻松搭建工作流。将数据库中的数据直接转化为精美的可视化图表,让数据开口说话。

2025-06-01 08:00:00 892

原创 【AI大模型应用】5分钟完成5小时工作:DeepSeek在合同管理中的高效应用

在传统办公场景中,处理大量PDF合同数据往往需要繁琐的手动录入、核对和整理,使用这种方式办公,不仅耗时耗力,而且还容易出错,对很多职场人来说,相信多多少少都有类似的经历。然而,借助DeepSeek,只需几分钟就能自动完成数据提取、格式转换,甚至生成Excel表格、折叠目录和可视化树图。本文将展示如何借助AI,让合同管理从“手动苦力”升级为“智能高效”。

2025-05-31 08:00:00 763

原创 【AI大模型实战篇】如何用 OpenAI Functions 从文本构建知识图谱?零基础小白看完这一篇就明白了!!

从非结构化数据(如文本)中提取结构化信息,这项技术已经存在有一段时间了,并不是什么新鲜事。然而,大型语言模型(LLMs)为信息提取领域带来了重大变革。如果说以前你需要一个机器学习专家团队来整理数据集和训练自定义模型,如今只需要接入一个大型语言模型即可。进入门槛大幅降低,使得原本仅限于领域专家的操作,现在连非技术人员也能轻松上手。

2025-05-30 11:24:19 714

原创 每位AI工程师都应了解的A2A、MCP与ACP协议!建议收藏起来慢慢学!!

什么是MCP(模型上下文协议)?MCP[1](Model Context Protocol,模型上下文协议)是由Anthropic公司提出的一种标准化接口,用于向大型语言模型(LLMs)提供结构化的实时上下文信息。

2025-05-30 10:29:00 828

原创 10 种最新的思维链(Chain-of-Thought, CoT)增强方法,零基础小白看到就是赚到!!

防御式链式思维(Chain-of-Defensive-Thought)该方法通过引入结构化、防御性的推理示例,提高大语言模型在面对被污染或误导信息时的稳健性。

2025-05-29 14:26:59 818

原创 DeepSeek R1迎来小更新大升级,性能直逼OpenAI o3!

昨日,DeepSeek 悄然发布了其 R1 大模型的最新版本——DeepSeek-R1-0528,目前已开启公测。一贯低调的 DeepSeek 在此番发布时,并未附带详细的技术说明,只是在官方微信社群中告知用户,“DeepSeek R1 模型已完成小版本试升级”,大家可以自行前往官方网页、APP、小程序进行测试。

2025-05-29 11:38:28 810

原创 Claude 4正式发布!最强代码模型+超级AI Agent,程序员的春天(还是冬天)来了?

这不仅仅是一次简单的升级,Claude 4 的发布,可能真的预示着 AI 技术,特别是 AI Agent 的能力,要迈向一个全新的阶段了。开发者们,你们是激动,还是有点小紧张呢?

2025-05-28 14:32:07 846

原创 OpenAI 正式发布企业级 AI 落地实践报告:7大经验教训,看到就是赚到!!

OpenAI 发布了一份名为《AI in the Enterprise》的报告,内容非常充实,包括如何将 AI 引入工作,AI 如何重塑新一代工作模式,AI 如何解锁开发者能力,以及如何评估,微调模型。分享了与 7 家“前沿公司”合作的经验教训。不仅仅有技术展示,更有实打实的落地策略。第一时间啃完这份报告,给大家划个重点

2025-05-28 11:43:33 495

原创 大模型开发实战,使用 LLaMA Factory 微调与量化模型并部署至 Ollama

LLaMA Factory 是一个开源的全栈大模型微调框架,简化和加速大型语言模型的训练、微调和部署流程。它支持从预训练到指令微调、强化学习、多模态训练等全流程操作,并提供灵活的配置选项和高效的资源管理能力,适合开发者快速定制化模型以适应特定应用场景。下面通过一个简单的示例来展示如何使用 LLaMA Factory 进行模型微调并部署至 Ollama。

2025-05-27 19:08:43 621

原创 47位大厂高管转战AI,字节占比超3成!明星高管+超级赛道,才是中国AI创业的最佳姿势

AI创业正值黄金窗口,而在技术与场景尚未收敛的阶段,人,是唯一可确定的变量。正因为如此,那些从复杂系统中走出来、拥有产品视野与组织经验的创业者,才会成为投资争相押注的对象。

2025-05-27 18:25:31 956

原创 构建企业私有RAG大模型: (可商用)利用vLLM部署开源大模型,能写文章、能聊天!

在企业构建RAG应用系统时,大模型是系统的核心。在RAG架构中,可以灵活配置不同的大模型,包括闭源模型如文心一言、通义千问、智普、元宝,以及OpenAI等提供收费API的高效接口。此外,为了降低成本,RAG系统通常会预置几款开源大模型,特别是在企业内部部署时,默认配置一款开源模型,以平衡性能和成本。

2025-05-26 14:45:14 565

原创 【开源】企业知识库革命!本地RAG系统如何实现“数据安全+智能问答”双赢?

在数据安全与AI智能化双重需求下,Local_Chat_RAG本地RAG系统应运而生。它通过本地化部署与动态知识检索,为企业构建了一个安全、高效的知识管理中枢。本文将详解其技术原理、核心优势及行业应用价值。

2025-05-26 11:50:11 668

原创 【AI大模型实战】Qwen3+QVQ-Max实现一个能吃图片的RAG,建议收藏!!

在之前我制作了几个 RAG,但都是吃文字吐文字的。一想到我的 RAG 只能看到冰冷的文字,而看不到类似猫娘的图片时,我就替 AI 感到惋惜。那么本文就手把手制作一个能吃图片的 RAG,打造一个能够进行图像检索的 RAG。

2025-05-25 08:00:00 921

原创 DeepSeek五大开源技术,我的同事又优化了一个

上次优化 DeepSeek 的“开源五宝”之一 DeepEP 并获得官方致谢之后,鹅厂的工程师最近又对另一个“宝”——FlashMLA 进行了深度优化:这次优化针对的是SGLang 推理框架 FlashMLA 后端,重点引入了多 Token 联合预测(MTP)技术和 FP8 精度 KV 缓存压缩算法,有效解决了大模型解码阶段显存带宽和容量的瓶颈问题。简单来说,这些优化让 FlashMLA 作为大模型推理阶段的降本增效神器,能够更高效、无损地与 SGLang 推理框架进行集成应用。

2025-05-24 14:25:36 719

原创 我现在知道,工作时需要什么样的AI了!让它更懂你的企业,更懂你的工作!

常常在思考,除了个人,AI还能为我们的企业做些什么?也经常有创业者、管理者问我,我们公司也想拥抱AI,但到底应该怎么拥抱?我是不是也应该买一台一体机?还是说,让员工都去学习使用各种AI工具?

2025-05-24 11:49:09 829

原创 盘点一下!大模型Agent 在各个行业领域的 “花式玩法”,涉及特别广泛~~

今年大模型Agent的风口确实很强,那么今天作者就继续再给大家认真盘一盘大模型Agent在各个领域的“花式玩法”,涉及电影、博客、医疗、金融分析、软件、数据可视化、新闻审查、具身AI、web导航等,并且基本上都有源码的。如果你正在做这方面的工作,亦或者是正在寻求Agent应用灵感,这篇文章或许对你有帮助。

2025-05-23 11:56:48 441

原创 LoRA为何成为大模型微调不可或缺的核心技术?看完这一篇你就懂了!!

在人工智能领域,大语言模型(LLMs)如Claude、LLaMA、DeepSeek等越来越强大,但想要让这些模型适应特定任务,比如法律问答、医学对话或者某企业内部知识问答,传统的方法是「微调」(Fine-tuning)模型。然而,这背后通常意味着巨大的计算开销和高昂的资源成本。有没有办法低成本、高效率地完成微调?有!这正是我们今天要聊的主角 —— LoRA(Low-Rank Adaptation)。

2025-05-23 11:10:27 726

原创 大模型不停进步,“杀死”了旧时代的产品经理

互联网时代属于产品经理的高光,还没有在AI时代复现。2024年,生成式大模型的迭代步伐暂时放缓,产品经理与创业者们看到了机会窗口,纷纷投入应用层开发,市场也期待从中涌现杀手级应用;但迈进2025年,应用层的失落,以及DeepSeek的出现,再次将行业视线扭回基础模型能力的迭代,“模型即产品”的呼声,引发了新一轮的产品经理“存在危机”。

2025-05-22 14:14:28 616

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除