数学建模
死磕的斯坦张
Coding everyday。
展开
-
优雅的向word中插入MATLAB代码块
目前网上有很多向word中插入代码块的方法,比如:在 Microsoft Word 优雅的插入代码块,但是网上的这些方法大多不支持MATLAB语言。 在查阅资料后,最终选择如下高亮方案: 打开网站 Markdown Nice, 然后点击写文章。初次使用,可能...转载 2022-04-14 17:07:01 · 4974 阅读 · 0 评论 -
matlab画基尼系数和画洛伦兹曲线
含义就是:把所有人(假设刚好 100 个人)的收入从小到大排序,然后从收入最少的开始累计,每计算一个人,横坐标为人数累计值占总人数比例,纵坐标为收入累计值占总收入比例,直到最后一个收入最大的人。显然,图中横坐标和纵坐标都是 [ 0 -1 ] 之间。把图左下角和右上角连起来,表示人数累计占比恒等于收入累积占比,意味着收入完全均等。好了,上面人人收入均等的线与实际收入曲线之间的面积就是 A, 实际收入曲线与 X 轴之间面积是 B。matlab代码%x1=0:0.1:1;%总人口 768152004..原创 2022-03-04 10:00:18 · 3400 阅读 · 1 评论 -
MATLAB求解一元二次方程
syms xf=21*x^2+2*x-4result=solve(f==0,x)原创 2022-02-19 17:32:41 · 21473 阅读 · 0 评论 -
2021数学建模国赛C题比赛总结和感想
目录标题问题重述论文摘要代码2.1 第一题马尔可夫预测模型(matlab)2.2 第二题第一问(lingo)2.3 第二题第二问(lingo)2.4 第二题第三问(lingo)2.5 第三题优化模型(lingo)2.6 第四题提升模型(lingo)2.7 大规模数据填表总结和感想整体过程犯错点感想问题重述某企业每年以 48 周安排生产 A,B,C 三种原材料,需提前制定 24 周的订 购和转运计划。已知该企业每周的产能为 2.82 万立方米,单位立方米产品需消 耗 A 或 B 或 C 类原材料的量分别原创 2021-10-15 11:05:33 · 7426 阅读 · 2 评论 -
岭回归和套索回归(Lasso)——解决多元回归的多重共线性问题
目录标题岭回归Lasso回归Stata的使用K 折交叉验证案例总结何时使用lasso回归解决问题:变量过多时可能会导致多重共线性问题造成回归系数的不显著,甚至造成OLS估计的失效岭回归和lasso回归在OLS回归模型的损失函数上加上了不同的惩罚项,该惩罚项由回归系数的函数构成,一方面,加入的惩罚项能够识别出模型中不重要的变量,对模型起到简化作用,可以看作逐步回归法的升级版;另一方面,加入的惩罚项能够让模型变得可估计,即使之前的数据不满足列满秩,在稍后的原理推导中我们将更加详细的说明这一点。岭回归优点原创 2021-05-21 21:10:12 · 9953 阅读 · 0 评论 -
聚类模型
目录标题K-means聚类算法K-means++算法聚类的一些问题系统(层次)聚类聚类谱系图(树状图)用图形估计聚类的数量DBSCAN算法总结K-means聚类算法K-means聚类的算法流程:一、指定需要划分的簇[cù]的个数K值(类的个数);二、随机地选择K个数据对象作为初始的聚类中心(不一定要是我们的样本点);三、计算其余的各个数据对象到这K个初始聚类中心的距离,把数据对象划归到距离它最近的那个中心所处在的簇类中;四、调整新类并且重新计算出新类的中心;五、循环步骤三和四,看原创 2021-04-17 21:18:16 · 397 阅读 · 0 评论 -
主成分分析法(PCA)——降维
简介主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,其能反映出原始数据的大部分信息。一般来说,当研究的问题涉及到多变量且变量之间存在很强的相关性时,我们可考虑使用主成分分析的方法来对数据进行简化。步骤样本标准化计算标准化样本协方差矩阵计算R的特征值和特征向量得出主成分贡献率和累计贡献率利用得分矩阵算出主成分解释主成分含义误区对于主成分分析降维以后,一般可以很好地用于聚类和回归,但是不能用于评价模型建议sp原创 2021-02-09 01:56:18 · 8131 阅读 · 0 评论 -
因子分析方法——线性指标降维
总结和主成分分析一样,我们可以用因子得分f1和f2作为两个新的变量,来进行后续的建模(例如聚类、回归等)注意:因子分析模型不能用于综合评价,尽管有很多论文是这样写的,但这是存在很大的问题的。例如变量的类型、选择因子的方法、旋转对最终的影响都是很难说清的建议:线性降维首先因子分析使用SPSS软件将会快捷很多因子得分乘以的数据必须先标准化(spss描述统计中可以一键得到)因子分析往往都比主成分分析更好,因为可以进行因子载荷旋转,所以可以得到更多解来进行新因子的内涵...原创 2021-02-09 01:44:19 · 2502 阅读 · 0 评论 -
层次分析法(评价问题)的基本解题步骤和思路
层次分析法(评价问题)一般的层次分析方式本质:层次分析就是给两两比较的指标进行量化比较实现权重的大小(专家打分)1.确定评价的标准,目标,可选的方案层次结构图目标层:最终目标准则层:各项指标方案层:哪些选择2.形成判断矩阵,正互反矩阵理论上是专家打分,实际则是根据文献资料主观判断。一般在建模论文中不必交代出处。3.和一致矩阵对比,完成一致性检验是否一致性:各行各列成倍数关系一致性检验原因:主观判断的打分是两两比较结果,可能导致打分比较不具有传导性,导致矛盾的结果。4.归一化处理原创 2021-01-29 16:36:56 · 7319 阅读 · 0 评论 -
AHP层次分析法求解过程(matlab代码)
层次分析法(AHP)的主要思想是根据研究对象的性质将要求达到的目标分解为多个组成因素,并按组成因素间的相互关系,将其层次化,组成一个层次结构模型,然后按层分析,最终获得最高层的重要性权值。层次分析法把一个复杂的无结构问题...转载 2020-09-13 10:46:37 · 2742 阅读 · 3 评论 -
MatLab基础操作
Matlab基础知识文章目录Matlab基础知识...转载 2020-04-30 14:25:50 · 361 阅读 · 0 评论