聚类模型

K-means聚类算法

K-means聚类的算法流程:

一、指定需要划分的簇[cù]的个数K值(类的个数);

二、随机地选择K个数据对象作为初始的聚类中心
(不一定要是我们的样本点);

三、计算其余的各个数据对象到这K个初始聚类中心
的距离,把数据对象划归到距离它最近的那个中心所
处在的簇类中;

四、调整新类并且重新计算出新类的中心;

五、循环步骤三和四,看中心是否收敛(不变),如
果收敛或达到迭代次数则停止循环;

六、结束

优点:
(1)算法简单、快速。
(2)对处理大数据集,该算法是相对高效率的。
缺点:
(1)要求用户必须事先给出要生成的簇的数目K。
(2)对初值敏感。
(3)对于孤立点数据敏感

K‐means++算法可解决2和3这两个缺点

K-means++算法

k-means++算法选择初始聚类中心的基本原则是:初始的聚类中
心之间的相互距离要尽可能的远。

算法描述如下:
(只对K-means算法“初始化K个聚类中心” 这一步进行了优化)

步骤一:随机选取一个样本作为第一个聚类中心;

步骤二:计算每个样本与当前已有聚类中心的最短距离(即与最
近一个聚类中心的距离),这个值越大,表示被选取作为聚类中
心的概率较大;最后,用轮盘法(依据概率大小来进行抽选)选
出下一个聚类中心;

步骤三:重复步骤二,直到选出K个聚类中心。选出初始点后,就
继续使用标准的K-means算法了。

建议使用SPSS软件求解

聚类的一些问题

(1)聚类的个数K值怎么定?
答:分几类主要取决于个人的经验与感觉,通常的做法是多尝试几个K值,看分成几类的结果更好解释,更符合分析目的等。

(2)数据的量纲不一致怎么办?
答:如果数据的量纲不一样,那么算距离时就没有意义。首先进行数据标椎化操作

系统(层次)聚类

系统聚类的合并算法通过计算两类数据点间的距离,对最为接近的两类数据点进行组合,并反复迭代这一过程,直到将所有数据点合成一类,并生成聚类谱系图

系统(层次)聚类的算法流程:
一、将每个对象看作一类,计算两两之间的最小距离;

二、将距离最小的两个类合并成一个新类;

三、重新计算新类与所有类之间的距离;

四、重复二三两步,直到所有类最后合并成一类;

五、结束

聚类谱系图(树状图)

在这里插入图片描述

用图形估计聚类的数量

在这里插入图片描述

DBSCAN算法

一种基于密度的聚类方法,聚类前不需要预先指定聚类的个数,生成的簇的个数不定(和数据有关)。

该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。

该方法能在具有噪声的空间数据库中发现任意形状的簇,可将密度足够大的相邻区域连接,能有效处理异常数据

DBSCAN算法将数据点分为三类:
• 核心点:在半径Eps内含有不少于MinPts数目的点
• 边界点:在半径Eps内点的数量小于MinPts,但是落在核心
点的邻域内
• 噪音点:既不是核心点也不是边界点的点

优点:

  1. 基于密度定义,能处理任意形状和大小的簇;
  2. 可在聚类的同时发现异常点;
  3. 与K-means比较起来,不需要输入要划分的聚类个数。

缺点:

  1. 对输入参数ε和Minpts敏感,确定参数困难;
  2. 由于DBSCAN算法中,变量ε和Minpts是全局唯一的,当聚类的密度不均匀时,聚
    类距离相差很大时,聚类质量差;
  3. 当数据量大时,计算密度单元的计算复杂度大。

总结

  1. 只有两个指标,且你做出散点图后发现数据表现得很“DBSCAN”,这时
    候你再用DBSCAN进行聚类。
  2. 其他情况下,全部使用系统聚类吧。
  3. K‐means也可以用,不过用了的话你论文上可写的东西比较少
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值