阿里云大模型ACP认证模拟考试(四)

考试重要提示:

答题开始即开始计时,中途不可暂停,如超时则自动提交。

  1. 本次考试共计 100 道题目,试卷总分 100 分,通过考试的成绩为 80 分及以上。
  2. 请务必在 120 分钟内完成交卷,由于考试过程不可暂停,请您提前规划好个人时间,若未能在规定时间内交卷,本次考试成绩将判定无效。
  3. 在开始答题前,系统会进行严格的身份验证流程。届时,请您准备好身份证,拍摄并上传身份证的人像面照片,同时按照系统的指引,开启摄像头完成面部识别,以确保考试身份的真实性。
  4. 整个考试期间,请保持摄像头开启状态,并确保摄像头清晰对准您的面部。系统会不定时抓拍您的考试画面,并与您上传的身份证照片进行比对。若系统检测到任何作弊行为,您本次的考试成绩将直接作废。
  5. 考试过程中,系统将持续监测您所使用浏览器的状态。一旦发现诸如最小化浏览器窗口、随意切换标签页、故意缩放窗口大小等行为,或者出现广告弹窗干扰考试,系统将及时发出警告。若此类异常行为次数过多,您的考试成绩同样会被判定无效。
  6. 为保证考试顺利进行,在考试开始前,请务必关闭各类即时通信软件以及其他任何可能弹出窗口的软件,避免因软件弹窗影响您的考试发挥。

单选题

  1. 以下关于调用通义千问时设置API Key的说法,正确的是( )
    A. 直接在代码中写入API Key是最便捷安全的方式
    B. 将API Key存储在环境变量中,分享代码时不易泄露密钥
    C. 代码中无需设置API Key也能调用通义千问
    D. 调用通义千问不需要API Key

  2. 在使用OpenAI Python SDK调用通义千问大模型时,若要实现流式输出,关键是( )
    A. 设置model参数为"qwen-plus-0919"
    B. 在messages列表中正确设置system和user角色
    C. 添加stream=True参数并调整输出方式
    D. 调整temperature和top_p参数

  3. 当使用大模型进行问答时,输入文本“ACP is a very”,大模型首先进行的操作是( )
    A. Token向量化
    B. 输入文本分词化
    C. 大模型推理
    D. 输出Token

  4. 假设使用通义千问plus模型生成代码,为保证输出稳定,temperature参数应( )
    A. 调高
    B. 调低
    C. 使用默认值
    D. 设置为2

  5. 若想让大模型在生成内容时,从概率排名前k的Token中随机选择一个进行输出,应设置的参数是( )
    A. temperature
    B. top_p
    C. top_k
    D. seed

  6. 在私有知识问答场景中,优先考虑通过提示词传递私域知识的原因是( )
    A. 微调或训练新模型成本低
    B. 提示词长度没有限制
    C. 微调或训练新模型成本高,此方法简便高效
    D. 大模型无法通过其他方式回答私域知识问题

  7. 构建RAG应用的建立索引阶段,将文件内容转化为多维向量使用的是( )
    A. 通义千问大模型
    B. 专用Embedding模型
    C. OpenAI Python SDK
    D. Tokenizer API

  8. 在使用LlamaIndex创建RAG应用时,SimpleDirectoryReader方法的作用是( )。
    A. 对文本进行分段
    B. 将指定文件夹中的文件加载为document对象
    C. 建立索引
    D. 生成最终提示词

  9. 关于RAG应用中检索阶段的描述,正确的是( )。
    A. 检索阶段只需要使用embedding模型对问题进行文本向量化,无需与向量数据库比较
    B. 检索阶段通过重排和句子窗口检索等方法可以提高检索准确性,无需考虑embedding模型性能
    C. 检索阶段通过embedding模型对问题进行文本向量化,并与向量数据库的段落进行语义相似度比较,找出最相关段落
    D. 检索阶段是RAG应用中最不重要的环节

  10. 在RAG应用的建立索引过程中,文本向量化的目的是( )。
    A. 为了让大模型更好地理解文本含义
    B. 将文本存储为向量数据库,便于后续检索
    C. 把自然语言转化为计算机能够理解的数字形式,以便进行相似度比较
    D. 对文档进行解析,使其符合大模型的输入要求

  11. 当使用LlamaIndex保存与加载索引时,index.storage_context.persist(“knowledge_base/test”)这行代码的作用是( )。
    A. 从本地加载索引文件
    B. 将索引保存为本地文件,路径为knowledge_base/test
    C. 创建一个新的索引并存储到指定路径
    D. 设置索引的存储上下文

  12. 在RAG应用实现多轮对话时,业界常用的解决方法是( )。
    A. 直接将用户输入与文本段进行相似度比较
    B. 将完整历史对话与问题都输入到检索系统
    C. 通过大模型,基于历史对话信息,将用户的问题改写为一个新的query,再进行检索与生成
    D. 只参考上一轮的对话信息进行检索

  13. 在创建RAG应用的代码中,OpenAILike类用于( )。
    A. 配置embedding模型
    B. 解析文档
    C. 设置文本生成模型相关参数
    D. 创建向量数据库

  14. 若要优化RAG应用中检索的准确性,以下做法错误的是( )。
    A. 使用性能更强大的embedding模型
    B. 进行重排操作
    C. 增加文本分段的长度
    D. 采用句子窗口检索方法

  15. 在使用 LlamaIndex 创建的 RAG 应用中,若要调整默认提示词模板,使其更符合答疑机器人的需求,以下关于调整过程的说法正确的是( )
    A. 直接修改 LlamaIndex 原始 prompt 模板中的 context_str 和 query_str 变量即可
    B. 通过重新构建提示词模板,并使用 rag.update_prompt_template 方法更新提示词模板
    C. 调整提示词模板不需要考虑原有模板的结构和要素
    D. 调整后的提示词模板不能对大模型的行为进行约束

  16. 对于一个要求大模型审查文档错别字并以json格式输出结果的任务,若大模型输出的内容不符合json格式要求,原因可能是( )
    A. 大模型本身不具备输出结构化内容的能力
    B. 提示词中未明确指定输出格式为json
    C. 大模型对文档内容理解错误
    D. 文档中存在复杂的句子结构影响了大模型的判断

  17. 在使用大模型进行意图识别时,若用户输入“请帮我翻译一下这句话:How are you?”,按照文档中介绍的意图识别方法,大模型应将该问题分类为( )
    A. 公司内部文档查询
    B. 内容翻译
    C. 文档审查
    D. 无法识别问题类型

  18. 关于推理大模型和通用大模型,以下说法错误的是( )
    A. 推理大模型设计目标专注于逻辑推理等深度分析任务
    B. 通用大模型训练数据侧重覆盖多领域海量数据
    C. 推理大模型输出简洁直接,侧重结果的自然语言表达
    D. 通用大模型常规任务响应更快

  19. 在利用大模型进行文档润色的代码示例中,若要使新的提示词模板生效,需要( )
    A. 重新运行整个代码文件
    B. 运行3.2中的代码
    C. 重新加载API密钥
    D. 重新建立索引

  20. 当使用大模型进行意图识别并应用到答疑机器人中时,若问题类型为“公司内部文档查询”,答疑机器人会( )
    A. 直接调用 llm.invoke 函数进行回答
    B. 使用 rag.ask 函数并结合 query_engine 进行回答
    C. 调用 reviewer_prompt 对应的函数进行回答
    D. 输出“未能识别问题类型,请重新输入。”

  21. 在使用推理大模型时,若想让模型对一段Python代码进行性能优化并给出多种优化方案,且按照特定格式输出,以下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值