考试重要提示:
答题开始即开始计时,中途不可暂停,如超时则自动提交。
- 本次考试共计 100 道题目,试卷总分 100 分,通过考试的成绩为 80 分及以上。
- 请务必在 120 分钟内完成交卷,由于考试过程不可暂停,请您提前规划好个人时间,若未能在规定时间内交卷,本次考试成绩将判定无效。
- 在开始答题前,系统会进行严格的身份验证流程。届时,请您准备好身份证,拍摄并上传身份证的人像面照片,同时按照系统的指引,开启摄像头完成面部识别,以确保考试身份的真实性。
- 整个考试期间,请保持摄像头开启状态,并确保摄像头清晰对准您的面部。系统会不定时抓拍您的考试画面,并与您上传的身份证照片进行比对。若系统检测到任何作弊行为,您本次的考试成绩将直接作废。
- 考试过程中,系统将持续监测您所使用浏览器的状态。一旦发现诸如最小化浏览器窗口、随意切换标签页、故意缩放窗口大小等行为,或者出现广告弹窗干扰考试,系统将及时发出警告。若此类异常行为次数过多,您的考试成绩同样会被判定无效。
- 为保证考试顺利进行,在考试开始前,请务必关闭各类即时通信软件以及其他任何可能弹出窗口的软件,避免因软件弹窗影响您的考试发挥。
单选题
-
以下关于调用通义千问时设置API Key的说法,正确的是( )
A. 直接在代码中写入API Key是最便捷安全的方式
B. 将API Key存储在环境变量中,分享代码时不易泄露密钥
C. 代码中无需设置API Key也能调用通义千问
D. 调用通义千问不需要API Key -
在使用OpenAI Python SDK调用通义千问大模型时,若要实现流式输出,关键是( )
A. 设置model参数为"qwen-plus-0919"
B. 在messages列表中正确设置system和user角色
C. 添加stream=True参数并调整输出方式
D. 调整temperature和top_p参数 -
当使用大模型进行问答时,输入文本“ACP is a very”,大模型首先进行的操作是( )
A. Token向量化
B. 输入文本分词化
C. 大模型推理
D. 输出Token -
假设使用通义千问plus模型生成代码,为保证输出稳定,temperature参数应( )
A. 调高
B. 调低
C. 使用默认值
D. 设置为2 -
若想让大模型在生成内容时,从概率排名前k的Token中随机选择一个进行输出,应设置的参数是( )
A. temperature
B. top_p
C. top_k
D. seed -
在私有知识问答场景中,优先考虑通过提示词传递私域知识的原因是( )
A. 微调或训练新模型成本低
B. 提示词长度没有限制
C. 微调或训练新模型成本高,此方法简便高效
D. 大模型无法通过其他方式回答私域知识问题 -
构建RAG应用的建立索引阶段,将文件内容转化为多维向量使用的是( )
A. 通义千问大模型
B. 专用Embedding模型
C. OpenAI Python SDK
D. Tokenizer API -
在使用LlamaIndex创建RAG应用时,SimpleDirectoryReader方法的作用是( )。
A. 对文本进行分段
B. 将指定文件夹中的文件加载为document对象
C. 建立索引
D. 生成最终提示词 -
关于RAG应用中检索阶段的描述,正确的是( )。
A. 检索阶段只需要使用embedding模型对问题进行文本向量化,无需与向量数据库比较
B. 检索阶段通过重排和句子窗口检索等方法可以提高检索准确性,无需考虑embedding模型性能
C. 检索阶段通过embedding模型对问题进行文本向量化,并与向量数据库的段落进行语义相似度比较,找出最相关段落
D. 检索阶段是RAG应用中最不重要的环节 -
在RAG应用的建立索引过程中,文本向量化的目的是( )。
A. 为了让大模型更好地理解文本含义
B. 将文本存储为向量数据库,便于后续检索
C. 把自然语言转化为计算机能够理解的数字形式,以便进行相似度比较
D. 对文档进行解析,使其符合大模型的输入要求 -
当使用LlamaIndex保存与加载索引时,index.storage_context.persist(“knowledge_base/test”)这行代码的作用是( )。
A. 从本地加载索引文件
B. 将索引保存为本地文件,路径为knowledge_base/test
C. 创建一个新的索引并存储到指定路径
D. 设置索引的存储上下文 -
在RAG应用实现多轮对话时,业界常用的解决方法是( )。
A. 直接将用户输入与文本段进行相似度比较
B. 将完整历史对话与问题都输入到检索系统
C. 通过大模型,基于历史对话信息,将用户的问题改写为一个新的query,再进行检索与生成
D. 只参考上一轮的对话信息进行检索 -
在创建RAG应用的代码中,OpenAILike类用于( )。
A. 配置embedding模型
B. 解析文档
C. 设置文本生成模型相关参数
D. 创建向量数据库 -
若要优化RAG应用中检索的准确性,以下做法错误的是( )。
A. 使用性能更强大的embedding模型
B. 进行重排操作
C. 增加文本分段的长度
D. 采用句子窗口检索方法 -
在使用 LlamaIndex 创建的 RAG 应用中,若要调整默认提示词模板,使其更符合答疑机器人的需求,以下关于调整过程的说法正确的是( )
A. 直接修改 LlamaIndex 原始 prompt 模板中的 context_str 和 query_str 变量即可
B. 通过重新构建提示词模板,并使用 rag.update_prompt_template 方法更新提示词模板
C. 调整提示词模板不需要考虑原有模板的结构和要素
D. 调整后的提示词模板不能对大模型的行为进行约束 -
对于一个要求大模型审查文档错别字并以json格式输出结果的任务,若大模型输出的内容不符合json格式要求,原因可能是( )
A. 大模型本身不具备输出结构化内容的能力
B. 提示词中未明确指定输出格式为json
C. 大模型对文档内容理解错误
D. 文档中存在复杂的句子结构影响了大模型的判断 -
在使用大模型进行意图识别时,若用户输入“请帮我翻译一下这句话:How are you?”,按照文档中介绍的意图识别方法,大模型应将该问题分类为( )
A. 公司内部文档查询
B. 内容翻译
C. 文档审查
D. 无法识别问题类型 -
关于推理大模型和通用大模型,以下说法错误的是( )
A. 推理大模型设计目标专注于逻辑推理等深度分析任务
B. 通用大模型训练数据侧重覆盖多领域海量数据
C. 推理大模型输出简洁直接,侧重结果的自然语言表达
D. 通用大模型常规任务响应更快 -
在利用大模型进行文档润色的代码示例中,若要使新的提示词模板生效,需要( )
A. 重新运行整个代码文件
B. 运行3.2中的代码
C. 重新加载API密钥
D. 重新建立索引 -
当使用大模型进行意图识别并应用到答疑机器人中时,若问题类型为“公司内部文档查询”,答疑机器人会( )
A. 直接调用 llm.invoke 函数进行回答
B. 使用 rag.ask 函数并结合 query_engine 进行回答
C. 调用 reviewer_prompt 对应的函数进行回答
D. 输出“未能识别问题类型,请重新输入。” -
在使用推理大模型时,若想让模型对一段Python代码进行性能优化并给出多种优化方案,且按照特定格式输出,以下